Cuboidal liquid crystal phases under multiaxial geometrical frustration
Cuboidal liquid crystal phases - the so-called blue phases - consist of a network of topological defects arranged into a cubic symmetry. They exhibit striking optical properties, including Bragg reflection in the visible range and fast response times. Confining surfaces can interfere with the packin...
Gespeichert in:
Veröffentlicht in: | Soft matter 2020-01, Vol.16 (4), p.87-88 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | 4 |
container_start_page | 87 |
container_title | Soft matter |
container_volume | 16 |
creator | Palacio-Betancur, Viviana Armas-Pérez, Julio C Villada-Gil, Stiven Abbott, Nicholas L Hernández-Ortiz, Juan P de Pablo, Juan J |
description | Cuboidal liquid crystal phases - the so-called blue phases - consist of a network of topological defects arranged into a cubic symmetry. They exhibit striking optical properties, including Bragg reflection in the visible range and fast response times. Confining surfaces can interfere with the packing of such a network, leading to structures that have not been explored before. In this work, a Landau-de Gennes free energy formalism for the tensor alignment field
Q
is used to investigate the behavior of chiral liquid crystals under non-isotropic confinement. The underlying free energy functional is solved by relying on a Monte Carlo method that facilitates efficient exploration of configuration space. The results of simulations are expressed in terms of phase diagrams as a function of chirality and temperature for three families of spheroids: oblate, spherical, and prolate. Upon deformation, blue phases adapt and transform to accommodate the geometrical constraints, thereby resulting in a wider range of thermal stability. For oblate spheroids, confinement interferes with the development of a full blue phase structure, resulting on a combination of half skyrmions. For prolate spheroids, the blue phases are hybridized and exhibit features of blue phases I and II. More generally, it is shown that mechanical deformation provides an effective means to control, manipulate and stabilize blue phases and cholesterics confined in tactoids.
Chiral LCs confined in spheroids exhibit new families of morphologies as a result of geometrical frustration. |
doi_str_mv | 10.1039/c9sm02021g |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9sm02021g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347518770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-90b28ce2c36d164b2bf9ce0eae038851f2c0221c558905b4eb090f3d1d5c9ea73</originalsourceid><addsrcrecordid>eNpd0ctLJDEQB-Agio9ZL96VQS-yMG5e3Z0cZVjHhREPuuCtSVdXa6S7M-YB639v1tERPKWSfBSV_Ag5YvSCUaF_gQ4D5ZSzxy2yzyopZ6WSantTi4c9chDCM6VCSVbukj3BtFCVlvtkMU-Ns63pp719Sbadgn8NMW9XTyZgmKaxRT8dUh-t-Wfz-SO6AaO3kOvOpxC9idaNP8hOZ_qAhx_rhPy9-n0_v54tbxd_5pfLGchKxZmmDVeAHETZslI2vOk0IEWDeTZVsI4D5ZxBUShNi0ZiQzXtRMvaAjSaSkzI6bqvC9HWAWxEeAI3jgixZoVmpdYZna_RyruXhCHWgw2AfW9GdCnUXAhNqVQFz_TsG312yY_5CVnJqmCqqmhWP9cKvAvBY1evvB2Mf60Zrf9nUM_13c17BouMTz5apmbAdkM_Pz2D4zXwATa3XyGKN5wJivo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347518770</pqid></control><display><type>article</type><title>Cuboidal liquid crystal phases under multiaxial geometrical frustration</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Palacio-Betancur, Viviana ; Armas-Pérez, Julio C ; Villada-Gil, Stiven ; Abbott, Nicholas L ; Hernández-Ortiz, Juan P ; de Pablo, Juan J</creator><creatorcontrib>Palacio-Betancur, Viviana ; Armas-Pérez, Julio C ; Villada-Gil, Stiven ; Abbott, Nicholas L ; Hernández-Ortiz, Juan P ; de Pablo, Juan J</creatorcontrib><description>Cuboidal liquid crystal phases - the so-called blue phases - consist of a network of topological defects arranged into a cubic symmetry. They exhibit striking optical properties, including Bragg reflection in the visible range and fast response times. Confining surfaces can interfere with the packing of such a network, leading to structures that have not been explored before. In this work, a Landau-de Gennes free energy formalism for the tensor alignment field
Q
is used to investigate the behavior of chiral liquid crystals under non-isotropic confinement. The underlying free energy functional is solved by relying on a Monte Carlo method that facilitates efficient exploration of configuration space. The results of simulations are expressed in terms of phase diagrams as a function of chirality and temperature for three families of spheroids: oblate, spherical, and prolate. Upon deformation, blue phases adapt and transform to accommodate the geometrical constraints, thereby resulting in a wider range of thermal stability. For oblate spheroids, confinement interferes with the development of a full blue phase structure, resulting on a combination of half skyrmions. For prolate spheroids, the blue phases are hybridized and exhibit features of blue phases I and II. More generally, it is shown that mechanical deformation provides an effective means to control, manipulate and stabilize blue phases and cholesterics confined in tactoids.
Chiral LCs confined in spheroids exhibit new families of morphologies as a result of geometrical frustration.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c9sm02021g</identifier><identifier>PMID: 31938794</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chirality ; Computer simulation ; Confinement ; Crystal defects ; Crystals ; Deformation ; Deformation effects ; Free energy ; Hypothetical particles ; Liquid crystals ; Monte Carlo simulation ; Oblate spheroids ; Optical properties ; Particle theory ; Phase diagrams ; Prolate spheroids ; Solid phases ; Spheroids ; Tensors ; Thermal stability</subject><ispartof>Soft matter, 2020-01, Vol.16 (4), p.87-88</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-90b28ce2c36d164b2bf9ce0eae038851f2c0221c558905b4eb090f3d1d5c9ea73</citedby><cites>FETCH-LOGICAL-c478t-90b28ce2c36d164b2bf9ce0eae038851f2c0221c558905b4eb090f3d1d5c9ea73</cites><orcidid>0000-0003-0404-9947 ; 0000-0002-1588-318X ; 0000-0002-4118-1202 ; 0000-0002-3526-516X ; 000000021588318X ; 0000000241181202 ; 000000023526516X ; 0000000304049947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31938794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1591699$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Palacio-Betancur, Viviana</creatorcontrib><creatorcontrib>Armas-Pérez, Julio C</creatorcontrib><creatorcontrib>Villada-Gil, Stiven</creatorcontrib><creatorcontrib>Abbott, Nicholas L</creatorcontrib><creatorcontrib>Hernández-Ortiz, Juan P</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><title>Cuboidal liquid crystal phases under multiaxial geometrical frustration</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Cuboidal liquid crystal phases - the so-called blue phases - consist of a network of topological defects arranged into a cubic symmetry. They exhibit striking optical properties, including Bragg reflection in the visible range and fast response times. Confining surfaces can interfere with the packing of such a network, leading to structures that have not been explored before. In this work, a Landau-de Gennes free energy formalism for the tensor alignment field
Q
is used to investigate the behavior of chiral liquid crystals under non-isotropic confinement. The underlying free energy functional is solved by relying on a Monte Carlo method that facilitates efficient exploration of configuration space. The results of simulations are expressed in terms of phase diagrams as a function of chirality and temperature for three families of spheroids: oblate, spherical, and prolate. Upon deformation, blue phases adapt and transform to accommodate the geometrical constraints, thereby resulting in a wider range of thermal stability. For oblate spheroids, confinement interferes with the development of a full blue phase structure, resulting on a combination of half skyrmions. For prolate spheroids, the blue phases are hybridized and exhibit features of blue phases I and II. More generally, it is shown that mechanical deformation provides an effective means to control, manipulate and stabilize blue phases and cholesterics confined in tactoids.
Chiral LCs confined in spheroids exhibit new families of morphologies as a result of geometrical frustration.</description><subject>Chirality</subject><subject>Computer simulation</subject><subject>Confinement</subject><subject>Crystal defects</subject><subject>Crystals</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Free energy</subject><subject>Hypothetical particles</subject><subject>Liquid crystals</subject><subject>Monte Carlo simulation</subject><subject>Oblate spheroids</subject><subject>Optical properties</subject><subject>Particle theory</subject><subject>Phase diagrams</subject><subject>Prolate spheroids</subject><subject>Solid phases</subject><subject>Spheroids</subject><subject>Tensors</subject><subject>Thermal stability</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0ctLJDEQB-Agio9ZL96VQS-yMG5e3Z0cZVjHhREPuuCtSVdXa6S7M-YB639v1tERPKWSfBSV_Ag5YvSCUaF_gQ4D5ZSzxy2yzyopZ6WSantTi4c9chDCM6VCSVbukj3BtFCVlvtkMU-Ns63pp719Sbadgn8NMW9XTyZgmKaxRT8dUh-t-Wfz-SO6AaO3kOvOpxC9idaNP8hOZ_qAhx_rhPy9-n0_v54tbxd_5pfLGchKxZmmDVeAHETZslI2vOk0IEWDeTZVsI4D5ZxBUShNi0ZiQzXtRMvaAjSaSkzI6bqvC9HWAWxEeAI3jgixZoVmpdYZna_RyruXhCHWgw2AfW9GdCnUXAhNqVQFz_TsG312yY_5CVnJqmCqqmhWP9cKvAvBY1evvB2Mf60Zrf9nUM_13c17BouMTz5apmbAdkM_Pz2D4zXwATa3XyGKN5wJivo</recordid><startdate>20200129</startdate><enddate>20200129</enddate><creator>Palacio-Betancur, Viviana</creator><creator>Armas-Pérez, Julio C</creator><creator>Villada-Gil, Stiven</creator><creator>Abbott, Nicholas L</creator><creator>Hernández-Ortiz, Juan P</creator><creator>de Pablo, Juan J</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0404-9947</orcidid><orcidid>https://orcid.org/0000-0002-1588-318X</orcidid><orcidid>https://orcid.org/0000-0002-4118-1202</orcidid><orcidid>https://orcid.org/0000-0002-3526-516X</orcidid><orcidid>https://orcid.org/000000021588318X</orcidid><orcidid>https://orcid.org/0000000241181202</orcidid><orcidid>https://orcid.org/000000023526516X</orcidid><orcidid>https://orcid.org/0000000304049947</orcidid></search><sort><creationdate>20200129</creationdate><title>Cuboidal liquid crystal phases under multiaxial geometrical frustration</title><author>Palacio-Betancur, Viviana ; Armas-Pérez, Julio C ; Villada-Gil, Stiven ; Abbott, Nicholas L ; Hernández-Ortiz, Juan P ; de Pablo, Juan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-90b28ce2c36d164b2bf9ce0eae038851f2c0221c558905b4eb090f3d1d5c9ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chirality</topic><topic>Computer simulation</topic><topic>Confinement</topic><topic>Crystal defects</topic><topic>Crystals</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Free energy</topic><topic>Hypothetical particles</topic><topic>Liquid crystals</topic><topic>Monte Carlo simulation</topic><topic>Oblate spheroids</topic><topic>Optical properties</topic><topic>Particle theory</topic><topic>Phase diagrams</topic><topic>Prolate spheroids</topic><topic>Solid phases</topic><topic>Spheroids</topic><topic>Tensors</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palacio-Betancur, Viviana</creatorcontrib><creatorcontrib>Armas-Pérez, Julio C</creatorcontrib><creatorcontrib>Villada-Gil, Stiven</creatorcontrib><creatorcontrib>Abbott, Nicholas L</creatorcontrib><creatorcontrib>Hernández-Ortiz, Juan P</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palacio-Betancur, Viviana</au><au>Armas-Pérez, Julio C</au><au>Villada-Gil, Stiven</au><au>Abbott, Nicholas L</au><au>Hernández-Ortiz, Juan P</au><au>de Pablo, Juan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cuboidal liquid crystal phases under multiaxial geometrical frustration</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2020-01-29</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>87</spage><epage>88</epage><pages>87-88</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Cuboidal liquid crystal phases - the so-called blue phases - consist of a network of topological defects arranged into a cubic symmetry. They exhibit striking optical properties, including Bragg reflection in the visible range and fast response times. Confining surfaces can interfere with the packing of such a network, leading to structures that have not been explored before. In this work, a Landau-de Gennes free energy formalism for the tensor alignment field
Q
is used to investigate the behavior of chiral liquid crystals under non-isotropic confinement. The underlying free energy functional is solved by relying on a Monte Carlo method that facilitates efficient exploration of configuration space. The results of simulations are expressed in terms of phase diagrams as a function of chirality and temperature for three families of spheroids: oblate, spherical, and prolate. Upon deformation, blue phases adapt and transform to accommodate the geometrical constraints, thereby resulting in a wider range of thermal stability. For oblate spheroids, confinement interferes with the development of a full blue phase structure, resulting on a combination of half skyrmions. For prolate spheroids, the blue phases are hybridized and exhibit features of blue phases I and II. More generally, it is shown that mechanical deformation provides an effective means to control, manipulate and stabilize blue phases and cholesterics confined in tactoids.
Chiral LCs confined in spheroids exhibit new families of morphologies as a result of geometrical frustration.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31938794</pmid><doi>10.1039/c9sm02021g</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0404-9947</orcidid><orcidid>https://orcid.org/0000-0002-1588-318X</orcidid><orcidid>https://orcid.org/0000-0002-4118-1202</orcidid><orcidid>https://orcid.org/0000-0002-3526-516X</orcidid><orcidid>https://orcid.org/000000021588318X</orcidid><orcidid>https://orcid.org/0000000241181202</orcidid><orcidid>https://orcid.org/000000023526516X</orcidid><orcidid>https://orcid.org/0000000304049947</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2020-01, Vol.16 (4), p.87-88 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_rsc_primary_c9sm02021g |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Chirality Computer simulation Confinement Crystal defects Crystals Deformation Deformation effects Free energy Hypothetical particles Liquid crystals Monte Carlo simulation Oblate spheroids Optical properties Particle theory Phase diagrams Prolate spheroids Solid phases Spheroids Tensors Thermal stability |
title | Cuboidal liquid crystal phases under multiaxial geometrical frustration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cuboidal%20liquid%20crystal%20phases%20under%20multiaxial%20geometrical%20frustration&rft.jtitle=Soft%20matter&rft.au=Palacio-Betancur,%20Viviana&rft.date=2020-01-29&rft.volume=16&rft.issue=4&rft.spage=87&rft.epage=88&rft.pages=87-88&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c9sm02021g&rft_dat=%3Cproquest_rsc_p%3E2347518770%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347518770&rft_id=info:pmid/31938794&rfr_iscdi=true |