Cuboidal liquid crystal phases under multiaxial geometrical frustration

Cuboidal liquid crystal phases - the so-called blue phases - consist of a network of topological defects arranged into a cubic symmetry. They exhibit striking optical properties, including Bragg reflection in the visible range and fast response times. Confining surfaces can interfere with the packin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2020-01, Vol.16 (4), p.87-88
Hauptverfasser: Palacio-Betancur, Viviana, Armas-Pérez, Julio C, Villada-Gil, Stiven, Abbott, Nicholas L, Hernández-Ortiz, Juan P, de Pablo, Juan J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 4
container_start_page 87
container_title Soft matter
container_volume 16
creator Palacio-Betancur, Viviana
Armas-Pérez, Julio C
Villada-Gil, Stiven
Abbott, Nicholas L
Hernández-Ortiz, Juan P
de Pablo, Juan J
description Cuboidal liquid crystal phases - the so-called blue phases - consist of a network of topological defects arranged into a cubic symmetry. They exhibit striking optical properties, including Bragg reflection in the visible range and fast response times. Confining surfaces can interfere with the packing of such a network, leading to structures that have not been explored before. In this work, a Landau-de Gennes free energy formalism for the tensor alignment field Q is used to investigate the behavior of chiral liquid crystals under non-isotropic confinement. The underlying free energy functional is solved by relying on a Monte Carlo method that facilitates efficient exploration of configuration space. The results of simulations are expressed in terms of phase diagrams as a function of chirality and temperature for three families of spheroids: oblate, spherical, and prolate. Upon deformation, blue phases adapt and transform to accommodate the geometrical constraints, thereby resulting in a wider range of thermal stability. For oblate spheroids, confinement interferes with the development of a full blue phase structure, resulting on a combination of half skyrmions. For prolate spheroids, the blue phases are hybridized and exhibit features of blue phases I and II. More generally, it is shown that mechanical deformation provides an effective means to control, manipulate and stabilize blue phases and cholesterics confined in tactoids. Chiral LCs confined in spheroids exhibit new families of morphologies as a result of geometrical frustration.
doi_str_mv 10.1039/c9sm02021g
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9sm02021g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347518770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-90b28ce2c36d164b2bf9ce0eae038851f2c0221c558905b4eb090f3d1d5c9ea73</originalsourceid><addsrcrecordid>eNpd0ctLJDEQB-Agio9ZL96VQS-yMG5e3Z0cZVjHhREPuuCtSVdXa6S7M-YB639v1tERPKWSfBSV_Ag5YvSCUaF_gQ4D5ZSzxy2yzyopZ6WSantTi4c9chDCM6VCSVbukj3BtFCVlvtkMU-Ns63pp719Sbadgn8NMW9XTyZgmKaxRT8dUh-t-Wfz-SO6AaO3kOvOpxC9idaNP8hOZ_qAhx_rhPy9-n0_v54tbxd_5pfLGchKxZmmDVeAHETZslI2vOk0IEWDeTZVsI4D5ZxBUShNi0ZiQzXtRMvaAjSaSkzI6bqvC9HWAWxEeAI3jgixZoVmpdYZna_RyruXhCHWgw2AfW9GdCnUXAhNqVQFz_TsG312yY_5CVnJqmCqqmhWP9cKvAvBY1evvB2Mf60Zrf9nUM_13c17BouMTz5apmbAdkM_Pz2D4zXwATa3XyGKN5wJivo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347518770</pqid></control><display><type>article</type><title>Cuboidal liquid crystal phases under multiaxial geometrical frustration</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Palacio-Betancur, Viviana ; Armas-Pérez, Julio C ; Villada-Gil, Stiven ; Abbott, Nicholas L ; Hernández-Ortiz, Juan P ; de Pablo, Juan J</creator><creatorcontrib>Palacio-Betancur, Viviana ; Armas-Pérez, Julio C ; Villada-Gil, Stiven ; Abbott, Nicholas L ; Hernández-Ortiz, Juan P ; de Pablo, Juan J</creatorcontrib><description>Cuboidal liquid crystal phases - the so-called blue phases - consist of a network of topological defects arranged into a cubic symmetry. They exhibit striking optical properties, including Bragg reflection in the visible range and fast response times. Confining surfaces can interfere with the packing of such a network, leading to structures that have not been explored before. In this work, a Landau-de Gennes free energy formalism for the tensor alignment field Q is used to investigate the behavior of chiral liquid crystals under non-isotropic confinement. The underlying free energy functional is solved by relying on a Monte Carlo method that facilitates efficient exploration of configuration space. The results of simulations are expressed in terms of phase diagrams as a function of chirality and temperature for three families of spheroids: oblate, spherical, and prolate. Upon deformation, blue phases adapt and transform to accommodate the geometrical constraints, thereby resulting in a wider range of thermal stability. For oblate spheroids, confinement interferes with the development of a full blue phase structure, resulting on a combination of half skyrmions. For prolate spheroids, the blue phases are hybridized and exhibit features of blue phases I and II. More generally, it is shown that mechanical deformation provides an effective means to control, manipulate and stabilize blue phases and cholesterics confined in tactoids. Chiral LCs confined in spheroids exhibit new families of morphologies as a result of geometrical frustration.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c9sm02021g</identifier><identifier>PMID: 31938794</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chirality ; Computer simulation ; Confinement ; Crystal defects ; Crystals ; Deformation ; Deformation effects ; Free energy ; Hypothetical particles ; Liquid crystals ; Monte Carlo simulation ; Oblate spheroids ; Optical properties ; Particle theory ; Phase diagrams ; Prolate spheroids ; Solid phases ; Spheroids ; Tensors ; Thermal stability</subject><ispartof>Soft matter, 2020-01, Vol.16 (4), p.87-88</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-90b28ce2c36d164b2bf9ce0eae038851f2c0221c558905b4eb090f3d1d5c9ea73</citedby><cites>FETCH-LOGICAL-c478t-90b28ce2c36d164b2bf9ce0eae038851f2c0221c558905b4eb090f3d1d5c9ea73</cites><orcidid>0000-0003-0404-9947 ; 0000-0002-1588-318X ; 0000-0002-4118-1202 ; 0000-0002-3526-516X ; 000000021588318X ; 0000000241181202 ; 000000023526516X ; 0000000304049947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31938794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1591699$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Palacio-Betancur, Viviana</creatorcontrib><creatorcontrib>Armas-Pérez, Julio C</creatorcontrib><creatorcontrib>Villada-Gil, Stiven</creatorcontrib><creatorcontrib>Abbott, Nicholas L</creatorcontrib><creatorcontrib>Hernández-Ortiz, Juan P</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><title>Cuboidal liquid crystal phases under multiaxial geometrical frustration</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Cuboidal liquid crystal phases - the so-called blue phases - consist of a network of topological defects arranged into a cubic symmetry. They exhibit striking optical properties, including Bragg reflection in the visible range and fast response times. Confining surfaces can interfere with the packing of such a network, leading to structures that have not been explored before. In this work, a Landau-de Gennes free energy formalism for the tensor alignment field Q is used to investigate the behavior of chiral liquid crystals under non-isotropic confinement. The underlying free energy functional is solved by relying on a Monte Carlo method that facilitates efficient exploration of configuration space. The results of simulations are expressed in terms of phase diagrams as a function of chirality and temperature for three families of spheroids: oblate, spherical, and prolate. Upon deformation, blue phases adapt and transform to accommodate the geometrical constraints, thereby resulting in a wider range of thermal stability. For oblate spheroids, confinement interferes with the development of a full blue phase structure, resulting on a combination of half skyrmions. For prolate spheroids, the blue phases are hybridized and exhibit features of blue phases I and II. More generally, it is shown that mechanical deformation provides an effective means to control, manipulate and stabilize blue phases and cholesterics confined in tactoids. Chiral LCs confined in spheroids exhibit new families of morphologies as a result of geometrical frustration.</description><subject>Chirality</subject><subject>Computer simulation</subject><subject>Confinement</subject><subject>Crystal defects</subject><subject>Crystals</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Free energy</subject><subject>Hypothetical particles</subject><subject>Liquid crystals</subject><subject>Monte Carlo simulation</subject><subject>Oblate spheroids</subject><subject>Optical properties</subject><subject>Particle theory</subject><subject>Phase diagrams</subject><subject>Prolate spheroids</subject><subject>Solid phases</subject><subject>Spheroids</subject><subject>Tensors</subject><subject>Thermal stability</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0ctLJDEQB-Agio9ZL96VQS-yMG5e3Z0cZVjHhREPuuCtSVdXa6S7M-YB639v1tERPKWSfBSV_Ag5YvSCUaF_gQ4D5ZSzxy2yzyopZ6WSantTi4c9chDCM6VCSVbukj3BtFCVlvtkMU-Ns63pp719Sbadgn8NMW9XTyZgmKaxRT8dUh-t-Wfz-SO6AaO3kOvOpxC9idaNP8hOZ_qAhx_rhPy9-n0_v54tbxd_5pfLGchKxZmmDVeAHETZslI2vOk0IEWDeTZVsI4D5ZxBUShNi0ZiQzXtRMvaAjSaSkzI6bqvC9HWAWxEeAI3jgixZoVmpdYZna_RyruXhCHWgw2AfW9GdCnUXAhNqVQFz_TsG312yY_5CVnJqmCqqmhWP9cKvAvBY1evvB2Mf60Zrf9nUM_13c17BouMTz5apmbAdkM_Pz2D4zXwATa3XyGKN5wJivo</recordid><startdate>20200129</startdate><enddate>20200129</enddate><creator>Palacio-Betancur, Viviana</creator><creator>Armas-Pérez, Julio C</creator><creator>Villada-Gil, Stiven</creator><creator>Abbott, Nicholas L</creator><creator>Hernández-Ortiz, Juan P</creator><creator>de Pablo, Juan J</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0404-9947</orcidid><orcidid>https://orcid.org/0000-0002-1588-318X</orcidid><orcidid>https://orcid.org/0000-0002-4118-1202</orcidid><orcidid>https://orcid.org/0000-0002-3526-516X</orcidid><orcidid>https://orcid.org/000000021588318X</orcidid><orcidid>https://orcid.org/0000000241181202</orcidid><orcidid>https://orcid.org/000000023526516X</orcidid><orcidid>https://orcid.org/0000000304049947</orcidid></search><sort><creationdate>20200129</creationdate><title>Cuboidal liquid crystal phases under multiaxial geometrical frustration</title><author>Palacio-Betancur, Viviana ; Armas-Pérez, Julio C ; Villada-Gil, Stiven ; Abbott, Nicholas L ; Hernández-Ortiz, Juan P ; de Pablo, Juan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-90b28ce2c36d164b2bf9ce0eae038851f2c0221c558905b4eb090f3d1d5c9ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chirality</topic><topic>Computer simulation</topic><topic>Confinement</topic><topic>Crystal defects</topic><topic>Crystals</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Free energy</topic><topic>Hypothetical particles</topic><topic>Liquid crystals</topic><topic>Monte Carlo simulation</topic><topic>Oblate spheroids</topic><topic>Optical properties</topic><topic>Particle theory</topic><topic>Phase diagrams</topic><topic>Prolate spheroids</topic><topic>Solid phases</topic><topic>Spheroids</topic><topic>Tensors</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palacio-Betancur, Viviana</creatorcontrib><creatorcontrib>Armas-Pérez, Julio C</creatorcontrib><creatorcontrib>Villada-Gil, Stiven</creatorcontrib><creatorcontrib>Abbott, Nicholas L</creatorcontrib><creatorcontrib>Hernández-Ortiz, Juan P</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palacio-Betancur, Viviana</au><au>Armas-Pérez, Julio C</au><au>Villada-Gil, Stiven</au><au>Abbott, Nicholas L</au><au>Hernández-Ortiz, Juan P</au><au>de Pablo, Juan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cuboidal liquid crystal phases under multiaxial geometrical frustration</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2020-01-29</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>87</spage><epage>88</epage><pages>87-88</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Cuboidal liquid crystal phases - the so-called blue phases - consist of a network of topological defects arranged into a cubic symmetry. They exhibit striking optical properties, including Bragg reflection in the visible range and fast response times. Confining surfaces can interfere with the packing of such a network, leading to structures that have not been explored before. In this work, a Landau-de Gennes free energy formalism for the tensor alignment field Q is used to investigate the behavior of chiral liquid crystals under non-isotropic confinement. The underlying free energy functional is solved by relying on a Monte Carlo method that facilitates efficient exploration of configuration space. The results of simulations are expressed in terms of phase diagrams as a function of chirality and temperature for three families of spheroids: oblate, spherical, and prolate. Upon deformation, blue phases adapt and transform to accommodate the geometrical constraints, thereby resulting in a wider range of thermal stability. For oblate spheroids, confinement interferes with the development of a full blue phase structure, resulting on a combination of half skyrmions. For prolate spheroids, the blue phases are hybridized and exhibit features of blue phases I and II. More generally, it is shown that mechanical deformation provides an effective means to control, manipulate and stabilize blue phases and cholesterics confined in tactoids. Chiral LCs confined in spheroids exhibit new families of morphologies as a result of geometrical frustration.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31938794</pmid><doi>10.1039/c9sm02021g</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0404-9947</orcidid><orcidid>https://orcid.org/0000-0002-1588-318X</orcidid><orcidid>https://orcid.org/0000-0002-4118-1202</orcidid><orcidid>https://orcid.org/0000-0002-3526-516X</orcidid><orcidid>https://orcid.org/000000021588318X</orcidid><orcidid>https://orcid.org/0000000241181202</orcidid><orcidid>https://orcid.org/000000023526516X</orcidid><orcidid>https://orcid.org/0000000304049947</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2020-01, Vol.16 (4), p.87-88
issn 1744-683X
1744-6848
language eng
recordid cdi_rsc_primary_c9sm02021g
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chirality
Computer simulation
Confinement
Crystal defects
Crystals
Deformation
Deformation effects
Free energy
Hypothetical particles
Liquid crystals
Monte Carlo simulation
Oblate spheroids
Optical properties
Particle theory
Phase diagrams
Prolate spheroids
Solid phases
Spheroids
Tensors
Thermal stability
title Cuboidal liquid crystal phases under multiaxial geometrical frustration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A01%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cuboidal%20liquid%20crystal%20phases%20under%20multiaxial%20geometrical%20frustration&rft.jtitle=Soft%20matter&rft.au=Palacio-Betancur,%20Viviana&rft.date=2020-01-29&rft.volume=16&rft.issue=4&rft.spage=87&rft.epage=88&rft.pages=87-88&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c9sm02021g&rft_dat=%3Cproquest_rsc_p%3E2347518770%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347518770&rft_id=info:pmid/31938794&rfr_iscdi=true