Bending, curling, and twisting in polymeric bilayers
Polyolefin thermoplastic elastomer (POE) bilayers of varying length ( L ) to width ( W ) ratio are formed through traditional polymer processing. Each layer is completely isotropic but the bilayers have an elastic recovery mismatch such that when stretched, one layer recovers to a different extent t...
Gespeichert in:
Veröffentlicht in: | Soft matter 2019-06, Vol.15 (22), p.4541-4547 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4547 |
---|---|
container_issue | 22 |
container_start_page | 4541 |
container_title | Soft matter |
container_volume | 15 |
creator | Wisinger, Catherine E Maynard, Leslie A Barone, Justin R |
description | Polyolefin thermoplastic elastomer (POE) bilayers of varying length (
L
) to width (
W
) ratio are formed through traditional polymer processing. Each layer is completely isotropic but the bilayers have an elastic recovery mismatch such that when stretched, one layer recovers to a different extent than the other. Upon stretching bilayers from low to moderate strains and releasing the bilayer bends (curvature,
κ
,
κ
< 1/
L
). Stretching to moderate strain and releasing results in bilayer curling (1/
L
≤
κ
< 1/
W
). Finally, stretching to high strains and releasing such that
κ
≥ 1/
W
results in twisting into a helix for
L
/
W
> 2π bilayers and rolling into a cylinder for
L
/
W
< 2π bilayers. Varying
W
can change the helical pitch,
l
p
, of twisted bilayers. The twisted bilayer helical rise angle varies between
= 60 and 90°. Metastability,
i.e.
, bilayers that show a combination of the two behaviors, is observed at long absolute
L
or short absolute
W
. The bilayers are modeled using Euler-Bernoulli beam theory to show that the curvature can be predicted using the elastic recovery of the layer that recovers more.
Polyolefin thermoplastic elastomer (POE) bilayers can be pulled and released to form helices without the use of directional anisotropy in the layers. |
doi_str_mv | 10.1039/c9sm00268e |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9sm00268e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235045782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-3baffd519d9b0b7ba9b5aaff9a6c159a703d3c0a90ec7355a2a9a247adfd8a2b3</originalsourceid><addsrcrecordid>eNpd0UlLAzEUB_Agiq3Vi3dlwIuIo1knk2MtdYGKBxW8DS_LyJRZajKD9Ns7XazgKS95Px7h_xA6JfiGYKZujQoVxjRJ3R4aEsl5nKQ83d_V7GOAjkKYY8xSTpJDNGAEK8WkGCJ-52pb1J_Xkel8uS6gtlH7XYS2v0VFHS2aclk5X5hIFyUsnQ_H6CCHMriT7TlC7_fTt8ljPHt5eJqMZ7Fhkrcx05DnVhBllcZaalBaQP-kIDFEKJCYWWYwKOyMZEIABQWUS7C5TYFqNkKXm7kL33x1LrRZVQTjyhJq13Qho5RRnCRUpj29-EfnTefr_ncrJTAXMqW9utoo45sQvMuzhS8q8MuM4GyVZTZRr8_rLKc9Pt-O7HTl7I7-hteDsw3wwey6f8tgP8lueD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235045782</pqid></control><display><type>article</type><title>Bending, curling, and twisting in polymeric bilayers</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wisinger, Catherine E ; Maynard, Leslie A ; Barone, Justin R</creator><creatorcontrib>Wisinger, Catherine E ; Maynard, Leslie A ; Barone, Justin R</creatorcontrib><description>Polyolefin thermoplastic elastomer (POE) bilayers of varying length (
L
) to width (
W
) ratio are formed through traditional polymer processing. Each layer is completely isotropic but the bilayers have an elastic recovery mismatch such that when stretched, one layer recovers to a different extent than the other. Upon stretching bilayers from low to moderate strains and releasing the bilayer bends (curvature,
κ
,
κ
< 1/
L
). Stretching to moderate strain and releasing results in bilayer curling (1/
L
≤
κ
< 1/
W
). Finally, stretching to high strains and releasing such that
κ
≥ 1/
W
results in twisting into a helix for
L
/
W
> 2π bilayers and rolling into a cylinder for
L
/
W
< 2π bilayers. Varying
W
can change the helical pitch,
l
p
, of twisted bilayers. The twisted bilayer helical rise angle varies between
= 60 and 90°. Metastability,
i.e.
, bilayers that show a combination of the two behaviors, is observed at long absolute
L
or short absolute
W
. The bilayers are modeled using Euler-Bernoulli beam theory to show that the curvature can be predicted using the elastic recovery of the layer that recovers more.
Polyolefin thermoplastic elastomer (POE) bilayers can be pulled and released to form helices without the use of directional anisotropy in the layers.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c9sm00268e</identifier><identifier>PMID: 31099375</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Beam theory (structures) ; Bends ; Curvature ; Cylinders ; Elastic recovery ; Euler-Bernoulli beams ; Olefinic thermoplastic elastomers ; Polyolefins ; Releasing ; Stretching ; Twisting</subject><ispartof>Soft matter, 2019-06, Vol.15 (22), p.4541-4547</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-3baffd519d9b0b7ba9b5aaff9a6c159a703d3c0a90ec7355a2a9a247adfd8a2b3</citedby><cites>FETCH-LOGICAL-c374t-3baffd519d9b0b7ba9b5aaff9a6c159a703d3c0a90ec7355a2a9a247adfd8a2b3</cites><orcidid>0000-0001-8869-2475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31099375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wisinger, Catherine E</creatorcontrib><creatorcontrib>Maynard, Leslie A</creatorcontrib><creatorcontrib>Barone, Justin R</creatorcontrib><title>Bending, curling, and twisting in polymeric bilayers</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Polyolefin thermoplastic elastomer (POE) bilayers of varying length (
L
) to width (
W
) ratio are formed through traditional polymer processing. Each layer is completely isotropic but the bilayers have an elastic recovery mismatch such that when stretched, one layer recovers to a different extent than the other. Upon stretching bilayers from low to moderate strains and releasing the bilayer bends (curvature,
κ
,
κ
< 1/
L
). Stretching to moderate strain and releasing results in bilayer curling (1/
L
≤
κ
< 1/
W
). Finally, stretching to high strains and releasing such that
κ
≥ 1/
W
results in twisting into a helix for
L
/
W
> 2π bilayers and rolling into a cylinder for
L
/
W
< 2π bilayers. Varying
W
can change the helical pitch,
l
p
, of twisted bilayers. The twisted bilayer helical rise angle varies between
= 60 and 90°. Metastability,
i.e.
, bilayers that show a combination of the two behaviors, is observed at long absolute
L
or short absolute
W
. The bilayers are modeled using Euler-Bernoulli beam theory to show that the curvature can be predicted using the elastic recovery of the layer that recovers more.
Polyolefin thermoplastic elastomer (POE) bilayers can be pulled and released to form helices without the use of directional anisotropy in the layers.</description><subject>Beam theory (structures)</subject><subject>Bends</subject><subject>Curvature</subject><subject>Cylinders</subject><subject>Elastic recovery</subject><subject>Euler-Bernoulli beams</subject><subject>Olefinic thermoplastic elastomers</subject><subject>Polyolefins</subject><subject>Releasing</subject><subject>Stretching</subject><subject>Twisting</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0UlLAzEUB_Agiq3Vi3dlwIuIo1knk2MtdYGKBxW8DS_LyJRZajKD9Ns7XazgKS95Px7h_xA6JfiGYKZujQoVxjRJ3R4aEsl5nKQ83d_V7GOAjkKYY8xSTpJDNGAEK8WkGCJ-52pb1J_Xkel8uS6gtlH7XYS2v0VFHS2aclk5X5hIFyUsnQ_H6CCHMriT7TlC7_fTt8ljPHt5eJqMZ7Fhkrcx05DnVhBllcZaalBaQP-kIDFEKJCYWWYwKOyMZEIABQWUS7C5TYFqNkKXm7kL33x1LrRZVQTjyhJq13Qho5RRnCRUpj29-EfnTefr_ncrJTAXMqW9utoo45sQvMuzhS8q8MuM4GyVZTZRr8_rLKc9Pt-O7HTl7I7-hteDsw3wwey6f8tgP8lueD8</recordid><startdate>20190605</startdate><enddate>20190605</enddate><creator>Wisinger, Catherine E</creator><creator>Maynard, Leslie A</creator><creator>Barone, Justin R</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8869-2475</orcidid></search><sort><creationdate>20190605</creationdate><title>Bending, curling, and twisting in polymeric bilayers</title><author>Wisinger, Catherine E ; Maynard, Leslie A ; Barone, Justin R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-3baffd519d9b0b7ba9b5aaff9a6c159a703d3c0a90ec7355a2a9a247adfd8a2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Beam theory (structures)</topic><topic>Bends</topic><topic>Curvature</topic><topic>Cylinders</topic><topic>Elastic recovery</topic><topic>Euler-Bernoulli beams</topic><topic>Olefinic thermoplastic elastomers</topic><topic>Polyolefins</topic><topic>Releasing</topic><topic>Stretching</topic><topic>Twisting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wisinger, Catherine E</creatorcontrib><creatorcontrib>Maynard, Leslie A</creatorcontrib><creatorcontrib>Barone, Justin R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wisinger, Catherine E</au><au>Maynard, Leslie A</au><au>Barone, Justin R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bending, curling, and twisting in polymeric bilayers</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2019-06-05</date><risdate>2019</risdate><volume>15</volume><issue>22</issue><spage>4541</spage><epage>4547</epage><pages>4541-4547</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Polyolefin thermoplastic elastomer (POE) bilayers of varying length (
L
) to width (
W
) ratio are formed through traditional polymer processing. Each layer is completely isotropic but the bilayers have an elastic recovery mismatch such that when stretched, one layer recovers to a different extent than the other. Upon stretching bilayers from low to moderate strains and releasing the bilayer bends (curvature,
κ
,
κ
< 1/
L
). Stretching to moderate strain and releasing results in bilayer curling (1/
L
≤
κ
< 1/
W
). Finally, stretching to high strains and releasing such that
κ
≥ 1/
W
results in twisting into a helix for
L
/
W
> 2π bilayers and rolling into a cylinder for
L
/
W
< 2π bilayers. Varying
W
can change the helical pitch,
l
p
, of twisted bilayers. The twisted bilayer helical rise angle varies between
= 60 and 90°. Metastability,
i.e.
, bilayers that show a combination of the two behaviors, is observed at long absolute
L
or short absolute
W
. The bilayers are modeled using Euler-Bernoulli beam theory to show that the curvature can be predicted using the elastic recovery of the layer that recovers more.
Polyolefin thermoplastic elastomer (POE) bilayers can be pulled and released to form helices without the use of directional anisotropy in the layers.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31099375</pmid><doi>10.1039/c9sm00268e</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8869-2475</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2019-06, Vol.15 (22), p.4541-4547 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_rsc_primary_c9sm00268e |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Beam theory (structures) Bends Curvature Cylinders Elastic recovery Euler-Bernoulli beams Olefinic thermoplastic elastomers Polyolefins Releasing Stretching Twisting |
title | Bending, curling, and twisting in polymeric bilayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bending,%20curling,%20and%20twisting%20in%20polymeric%20bilayers&rft.jtitle=Soft%20matter&rft.au=Wisinger,%20Catherine%20E&rft.date=2019-06-05&rft.volume=15&rft.issue=22&rft.spage=4541&rft.epage=4547&rft.pages=4541-4547&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c9sm00268e&rft_dat=%3Cproquest_rsc_p%3E2235045782%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235045782&rft_id=info:pmid/31099375&rfr_iscdi=true |