Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II
The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects of uncovering mechanisms of efficient energy transport. However, experimental evidence of functionally relevant coherences in wild-type proteins has been tentative, leading to u...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2019-12, Vol.1 (45), p.153-159 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 45 |
container_start_page | 153 |
container_title | Chemical science (Cambridge) |
container_volume | 1 |
creator | Irgen-Gioro, Shawn Gururangan, Karthik Saer, Rafael G Blankenship, Robert E Harel, Elad |
description | The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects of uncovering mechanisms of efficient energy transport. However, experimental evidence of functionally relevant coherences in wild-type proteins has been tentative, leading to uncertainty in their importance at physiological conditions. Here, we extract the electronic coherence lifetime and frequency using a signal subtraction procedure in two model pigment-protein-complexes (PPCs), light harvesting complex II (LH2) and the Fenna-Matthews-Olson complex (FMO), and find that the coherence lifetimes occur at the same timescale ( |
doi_str_mv | 10.1039/c9sc03501j |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9sc03501j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315977172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-357705c39beead243159d73ed8ee8bee32f242c7debff7488c83c254ad42e7b3</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMoKurGvVJwI0I1zW1MuxFk8DGiuNB9SNPbaYc2GZOOj39vxhnrI5s87ncP5-YQsp_Q04RCfqZzrylwmkzXyDajaRKfc8jXhzOjW2TP-ykNCyDhTGySLWCUcxCwTYqrFnXvrGl0pG2NDo3GqG0q7JsOfWSrqK8xukZjVPyg-nB58_Fj660JfDdr8T1Spgwdk7qPauVe0feNmQzF8XiXbFSq9bi32nfI8_XV8-g2vn-8GY8u72OdsqyPgQtBuYa8QFQlS4PXvBSAZYaYhTdgFUuZFiUWVSXSLNMZaMZTVaYMRQE75GIpO5sXHZYaTe9UK2eu6ZT7kFY18m_FNLWc2FcpwsdkQgSB45WAsy_zMIbsGq-xbZVBO_eSAec55BldoEf_0KmdOxOmC1TwLUQiWKBOlpR21nuH1WAmoXIRnhzlT6Ov8O4CfPjb_oB-RxWAgyXgvB6qP-nDJ9AxoAY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315977172</pqid></control><display><type>article</type><title>Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Irgen-Gioro, Shawn ; Gururangan, Karthik ; Saer, Rafael G ; Blankenship, Robert E ; Harel, Elad</creator><creatorcontrib>Irgen-Gioro, Shawn ; Gururangan, Karthik ; Saer, Rafael G ; Blankenship, Robert E ; Harel, Elad</creatorcontrib><description>The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects of uncovering mechanisms of efficient energy transport. However, experimental evidence of functionally relevant coherences in wild-type proteins has been tentative, leading to uncertainty in their importance at physiological conditions. Here, we extract the electronic coherence lifetime and frequency using a signal subtraction procedure in two model pigment-protein-complexes (PPCs), light harvesting complex II (LH2) and the Fenna-Matthews-Olson complex (FMO), and find that the coherence lifetimes occur at the same timescale (<100 fs) as energy transport between states at the energy level difference equal to the coherence energy. The pigment monomer bacteriochlorophyll
a
(BChl
a
) shows no electronic coherences, supporting our methodology of removing long-lived vibrational coherences that have obfuscated previous assignments. This correlation of timescales and energy between coherences and energy transport reestablishes the time and energy scales that quantum processes may play a role in energy transport.
The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects for uncovering mechanisms of efficient energy transport.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc03501j</identifier><identifier>PMID: 32055373</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Computer simulation ; Energy ; Energy levels ; Energy transfer ; Photosynthesis ; Proteins ; Subtraction ; Transport</subject><ispartof>Chemical science (Cambridge), 2019-12, Vol.1 (45), p.153-159</ispartof><rights>This journal is © The Royal Society of Chemistry 2019.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-357705c39beead243159d73ed8ee8bee32f242c7debff7488c83c254ad42e7b3</citedby><cites>FETCH-LOGICAL-c428t-357705c39beead243159d73ed8ee8bee32f242c7debff7488c83c254ad42e7b3</cites><orcidid>0000-0003-0879-9489 ; 0000-0003-0983-2279 ; 0000-0001-8638-6191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003877/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003877/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32055373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Irgen-Gioro, Shawn</creatorcontrib><creatorcontrib>Gururangan, Karthik</creatorcontrib><creatorcontrib>Saer, Rafael G</creatorcontrib><creatorcontrib>Blankenship, Robert E</creatorcontrib><creatorcontrib>Harel, Elad</creatorcontrib><title>Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects of uncovering mechanisms of efficient energy transport. However, experimental evidence of functionally relevant coherences in wild-type proteins has been tentative, leading to uncertainty in their importance at physiological conditions. Here, we extract the electronic coherence lifetime and frequency using a signal subtraction procedure in two model pigment-protein-complexes (PPCs), light harvesting complex II (LH2) and the Fenna-Matthews-Olson complex (FMO), and find that the coherence lifetimes occur at the same timescale (<100 fs) as energy transport between states at the energy level difference equal to the coherence energy. The pigment monomer bacteriochlorophyll
a
(BChl
a
) shows no electronic coherences, supporting our methodology of removing long-lived vibrational coherences that have obfuscated previous assignments. This correlation of timescales and energy between coherences and energy transport reestablishes the time and energy scales that quantum processes may play a role in energy transport.
The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects for uncovering mechanisms of efficient energy transport.</description><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Energy levels</subject><subject>Energy transfer</subject><subject>Photosynthesis</subject><subject>Proteins</subject><subject>Subtraction</subject><subject>Transport</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLxDAUhYMoKurGvVJwI0I1zW1MuxFk8DGiuNB9SNPbaYc2GZOOj39vxhnrI5s87ncP5-YQsp_Q04RCfqZzrylwmkzXyDajaRKfc8jXhzOjW2TP-ykNCyDhTGySLWCUcxCwTYqrFnXvrGl0pG2NDo3GqG0q7JsOfWSrqK8xukZjVPyg-nB58_Fj660JfDdr8T1Spgwdk7qPauVe0feNmQzF8XiXbFSq9bi32nfI8_XV8-g2vn-8GY8u72OdsqyPgQtBuYa8QFQlS4PXvBSAZYaYhTdgFUuZFiUWVSXSLNMZaMZTVaYMRQE75GIpO5sXHZYaTe9UK2eu6ZT7kFY18m_FNLWc2FcpwsdkQgSB45WAsy_zMIbsGq-xbZVBO_eSAec55BldoEf_0KmdOxOmC1TwLUQiWKBOlpR21nuH1WAmoXIRnhzlT6Ov8O4CfPjb_oB-RxWAgyXgvB6qP-nDJ9AxoAY</recordid><startdate>20191207</startdate><enddate>20191207</enddate><creator>Irgen-Gioro, Shawn</creator><creator>Gururangan, Karthik</creator><creator>Saer, Rafael G</creator><creator>Blankenship, Robert E</creator><creator>Harel, Elad</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0879-9489</orcidid><orcidid>https://orcid.org/0000-0003-0983-2279</orcidid><orcidid>https://orcid.org/0000-0001-8638-6191</orcidid></search><sort><creationdate>20191207</creationdate><title>Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II</title><author>Irgen-Gioro, Shawn ; Gururangan, Karthik ; Saer, Rafael G ; Blankenship, Robert E ; Harel, Elad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-357705c39beead243159d73ed8ee8bee32f242c7debff7488c83c254ad42e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Energy levels</topic><topic>Energy transfer</topic><topic>Photosynthesis</topic><topic>Proteins</topic><topic>Subtraction</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irgen-Gioro, Shawn</creatorcontrib><creatorcontrib>Gururangan, Karthik</creatorcontrib><creatorcontrib>Saer, Rafael G</creatorcontrib><creatorcontrib>Blankenship, Robert E</creatorcontrib><creatorcontrib>Harel, Elad</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irgen-Gioro, Shawn</au><au>Gururangan, Karthik</au><au>Saer, Rafael G</au><au>Blankenship, Robert E</au><au>Harel, Elad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2019-12-07</date><risdate>2019</risdate><volume>1</volume><issue>45</issue><spage>153</spage><epage>159</epage><pages>153-159</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects of uncovering mechanisms of efficient energy transport. However, experimental evidence of functionally relevant coherences in wild-type proteins has been tentative, leading to uncertainty in their importance at physiological conditions. Here, we extract the electronic coherence lifetime and frequency using a signal subtraction procedure in two model pigment-protein-complexes (PPCs), light harvesting complex II (LH2) and the Fenna-Matthews-Olson complex (FMO), and find that the coherence lifetimes occur at the same timescale (<100 fs) as energy transport between states at the energy level difference equal to the coherence energy. The pigment monomer bacteriochlorophyll
a
(BChl
a
) shows no electronic coherences, supporting our methodology of removing long-lived vibrational coherences that have obfuscated previous assignments. This correlation of timescales and energy between coherences and energy transport reestablishes the time and energy scales that quantum processes may play a role in energy transport.
The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects for uncovering mechanisms of efficient energy transport.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32055373</pmid><doi>10.1039/c9sc03501j</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0879-9489</orcidid><orcidid>https://orcid.org/0000-0003-0983-2279</orcidid><orcidid>https://orcid.org/0000-0001-8638-6191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2019-12, Vol.1 (45), p.153-159 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_rsc_primary_c9sc03501j |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Chemistry Computer simulation Energy Energy levels Energy transfer Photosynthesis Proteins Subtraction Transport |
title | Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20coherence%20lifetimes%20of%20the%20Fenna-Matthews-Olson%20complex%20and%20light%20harvesting%20complex%20II&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Irgen-Gioro,%20Shawn&rft.date=2019-12-07&rft.volume=1&rft.issue=45&rft.spage=153&rft.epage=159&rft.pages=153-159&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc03501j&rft_dat=%3Cproquest_rsc_p%3E2315977172%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315977172&rft_id=info:pmid/32055373&rfr_iscdi=true |