Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II

The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects of uncovering mechanisms of efficient energy transport. However, experimental evidence of functionally relevant coherences in wild-type proteins has been tentative, leading to u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2019-12, Vol.1 (45), p.153-159
Hauptverfasser: Irgen-Gioro, Shawn, Gururangan, Karthik, Saer, Rafael G, Blankenship, Robert E, Harel, Elad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 45
container_start_page 153
container_title Chemical science (Cambridge)
container_volume 1
creator Irgen-Gioro, Shawn
Gururangan, Karthik
Saer, Rafael G
Blankenship, Robert E
Harel, Elad
description The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects of uncovering mechanisms of efficient energy transport. However, experimental evidence of functionally relevant coherences in wild-type proteins has been tentative, leading to uncertainty in their importance at physiological conditions. Here, we extract the electronic coherence lifetime and frequency using a signal subtraction procedure in two model pigment-protein-complexes (PPCs), light harvesting complex II (LH2) and the Fenna-Matthews-Olson complex (FMO), and find that the coherence lifetimes occur at the same timescale (
doi_str_mv 10.1039/c9sc03501j
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9sc03501j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315977172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-357705c39beead243159d73ed8ee8bee32f242c7debff7488c83c254ad42e7b3</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMoKurGvVJwI0I1zW1MuxFk8DGiuNB9SNPbaYc2GZOOj39vxhnrI5s87ncP5-YQsp_Q04RCfqZzrylwmkzXyDajaRKfc8jXhzOjW2TP-ykNCyDhTGySLWCUcxCwTYqrFnXvrGl0pG2NDo3GqG0q7JsOfWSrqK8xukZjVPyg-nB58_Fj660JfDdr8T1Spgwdk7qPauVe0feNmQzF8XiXbFSq9bi32nfI8_XV8-g2vn-8GY8u72OdsqyPgQtBuYa8QFQlS4PXvBSAZYaYhTdgFUuZFiUWVSXSLNMZaMZTVaYMRQE75GIpO5sXHZYaTe9UK2eu6ZT7kFY18m_FNLWc2FcpwsdkQgSB45WAsy_zMIbsGq-xbZVBO_eSAec55BldoEf_0KmdOxOmC1TwLUQiWKBOlpR21nuH1WAmoXIRnhzlT6Ov8O4CfPjb_oB-RxWAgyXgvB6qP-nDJ9AxoAY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315977172</pqid></control><display><type>article</type><title>Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Irgen-Gioro, Shawn ; Gururangan, Karthik ; Saer, Rafael G ; Blankenship, Robert E ; Harel, Elad</creator><creatorcontrib>Irgen-Gioro, Shawn ; Gururangan, Karthik ; Saer, Rafael G ; Blankenship, Robert E ; Harel, Elad</creatorcontrib><description>The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects of uncovering mechanisms of efficient energy transport. However, experimental evidence of functionally relevant coherences in wild-type proteins has been tentative, leading to uncertainty in their importance at physiological conditions. Here, we extract the electronic coherence lifetime and frequency using a signal subtraction procedure in two model pigment-protein-complexes (PPCs), light harvesting complex II (LH2) and the Fenna-Matthews-Olson complex (FMO), and find that the coherence lifetimes occur at the same timescale (&lt;100 fs) as energy transport between states at the energy level difference equal to the coherence energy. The pigment monomer bacteriochlorophyll a (BChl a ) shows no electronic coherences, supporting our methodology of removing long-lived vibrational coherences that have obfuscated previous assignments. This correlation of timescales and energy between coherences and energy transport reestablishes the time and energy scales that quantum processes may play a role in energy transport. The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects for uncovering mechanisms of efficient energy transport.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc03501j</identifier><identifier>PMID: 32055373</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Computer simulation ; Energy ; Energy levels ; Energy transfer ; Photosynthesis ; Proteins ; Subtraction ; Transport</subject><ispartof>Chemical science (Cambridge), 2019-12, Vol.1 (45), p.153-159</ispartof><rights>This journal is © The Royal Society of Chemistry 2019.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-357705c39beead243159d73ed8ee8bee32f242c7debff7488c83c254ad42e7b3</citedby><cites>FETCH-LOGICAL-c428t-357705c39beead243159d73ed8ee8bee32f242c7debff7488c83c254ad42e7b3</cites><orcidid>0000-0003-0879-9489 ; 0000-0003-0983-2279 ; 0000-0001-8638-6191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003877/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003877/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32055373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Irgen-Gioro, Shawn</creatorcontrib><creatorcontrib>Gururangan, Karthik</creatorcontrib><creatorcontrib>Saer, Rafael G</creatorcontrib><creatorcontrib>Blankenship, Robert E</creatorcontrib><creatorcontrib>Harel, Elad</creatorcontrib><title>Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects of uncovering mechanisms of efficient energy transport. However, experimental evidence of functionally relevant coherences in wild-type proteins has been tentative, leading to uncertainty in their importance at physiological conditions. Here, we extract the electronic coherence lifetime and frequency using a signal subtraction procedure in two model pigment-protein-complexes (PPCs), light harvesting complex II (LH2) and the Fenna-Matthews-Olson complex (FMO), and find that the coherence lifetimes occur at the same timescale (&lt;100 fs) as energy transport between states at the energy level difference equal to the coherence energy. The pigment monomer bacteriochlorophyll a (BChl a ) shows no electronic coherences, supporting our methodology of removing long-lived vibrational coherences that have obfuscated previous assignments. This correlation of timescales and energy between coherences and energy transport reestablishes the time and energy scales that quantum processes may play a role in energy transport. The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects for uncovering mechanisms of efficient energy transport.</description><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Energy levels</subject><subject>Energy transfer</subject><subject>Photosynthesis</subject><subject>Proteins</subject><subject>Subtraction</subject><subject>Transport</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLxDAUhYMoKurGvVJwI0I1zW1MuxFk8DGiuNB9SNPbaYc2GZOOj39vxhnrI5s87ncP5-YQsp_Q04RCfqZzrylwmkzXyDajaRKfc8jXhzOjW2TP-ykNCyDhTGySLWCUcxCwTYqrFnXvrGl0pG2NDo3GqG0q7JsOfWSrqK8xukZjVPyg-nB58_Fj660JfDdr8T1Spgwdk7qPauVe0feNmQzF8XiXbFSq9bi32nfI8_XV8-g2vn-8GY8u72OdsqyPgQtBuYa8QFQlS4PXvBSAZYaYhTdgFUuZFiUWVSXSLNMZaMZTVaYMRQE75GIpO5sXHZYaTe9UK2eu6ZT7kFY18m_FNLWc2FcpwsdkQgSB45WAsy_zMIbsGq-xbZVBO_eSAec55BldoEf_0KmdOxOmC1TwLUQiWKBOlpR21nuH1WAmoXIRnhzlT6Ov8O4CfPjb_oB-RxWAgyXgvB6qP-nDJ9AxoAY</recordid><startdate>20191207</startdate><enddate>20191207</enddate><creator>Irgen-Gioro, Shawn</creator><creator>Gururangan, Karthik</creator><creator>Saer, Rafael G</creator><creator>Blankenship, Robert E</creator><creator>Harel, Elad</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0879-9489</orcidid><orcidid>https://orcid.org/0000-0003-0983-2279</orcidid><orcidid>https://orcid.org/0000-0001-8638-6191</orcidid></search><sort><creationdate>20191207</creationdate><title>Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II</title><author>Irgen-Gioro, Shawn ; Gururangan, Karthik ; Saer, Rafael G ; Blankenship, Robert E ; Harel, Elad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-357705c39beead243159d73ed8ee8bee32f242c7debff7488c83c254ad42e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Energy levels</topic><topic>Energy transfer</topic><topic>Photosynthesis</topic><topic>Proteins</topic><topic>Subtraction</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irgen-Gioro, Shawn</creatorcontrib><creatorcontrib>Gururangan, Karthik</creatorcontrib><creatorcontrib>Saer, Rafael G</creatorcontrib><creatorcontrib>Blankenship, Robert E</creatorcontrib><creatorcontrib>Harel, Elad</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irgen-Gioro, Shawn</au><au>Gururangan, Karthik</au><au>Saer, Rafael G</au><au>Blankenship, Robert E</au><au>Harel, Elad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2019-12-07</date><risdate>2019</risdate><volume>1</volume><issue>45</issue><spage>153</spage><epage>159</epage><pages>153-159</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects of uncovering mechanisms of efficient energy transport. However, experimental evidence of functionally relevant coherences in wild-type proteins has been tentative, leading to uncertainty in their importance at physiological conditions. Here, we extract the electronic coherence lifetime and frequency using a signal subtraction procedure in two model pigment-protein-complexes (PPCs), light harvesting complex II (LH2) and the Fenna-Matthews-Olson complex (FMO), and find that the coherence lifetimes occur at the same timescale (&lt;100 fs) as energy transport between states at the energy level difference equal to the coherence energy. The pigment monomer bacteriochlorophyll a (BChl a ) shows no electronic coherences, supporting our methodology of removing long-lived vibrational coherences that have obfuscated previous assignments. This correlation of timescales and energy between coherences and energy transport reestablishes the time and energy scales that quantum processes may play a role in energy transport. The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects for uncovering mechanisms of efficient energy transport.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32055373</pmid><doi>10.1039/c9sc03501j</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0879-9489</orcidid><orcidid>https://orcid.org/0000-0003-0983-2279</orcidid><orcidid>https://orcid.org/0000-0001-8638-6191</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2019-12, Vol.1 (45), p.153-159
issn 2041-6520
2041-6539
language eng
recordid cdi_rsc_primary_c9sc03501j
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Chemistry
Computer simulation
Energy
Energy levels
Energy transfer
Photosynthesis
Proteins
Subtraction
Transport
title Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20coherence%20lifetimes%20of%20the%20Fenna-Matthews-Olson%20complex%20and%20light%20harvesting%20complex%20II&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Irgen-Gioro,%20Shawn&rft.date=2019-12-07&rft.volume=1&rft.issue=45&rft.spage=153&rft.epage=159&rft.pages=153-159&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc03501j&rft_dat=%3Cproquest_rsc_p%3E2315977172%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315977172&rft_id=info:pmid/32055373&rfr_iscdi=true