Unveiling the mechanism of lattice-mismatched crystal growth of a coreshell metalorganic framework
Determining the effect of severe lattice mismatch on the crystal growth mechanism and form of epitaxially grown materials is vital to understand and direct the form and function of such materials. Herein, we report the use of atomic force microscopy to reveal the growth of a shell metalorganic frame...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2019-10, Vol.1 (41), p.9571-9575 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9575 |
---|---|
container_issue | 41 |
container_start_page | 9571 |
container_title | Chemical science (Cambridge) |
container_volume | 1 |
creator | Pambudi, Fajar I Anderson, Michael W Attfield, Martin P |
description | Determining the effect of severe lattice mismatch on the crystal growth mechanism and form of epitaxially grown materials is vital to understand and direct the form and function of such materials. Herein, we report the use of atomic force microscopy to reveal the growth of a shell metalorganic framework (MOF) on all faces of a core MOF that has similar
a
,
b
-lattice parameters but a 32% mismatch in the
c
-lattice parameter. The work shows the mechanism through which the shell MOF overcomes the core terrace height mismatch depends on that mismatch being reduced before overgrowth of continuous shell layers can occur. This reduction is achieved
via
a process of growth of non-continuous shell layers that are terminated by terrace edges of the core. The crystal form of the shell MOF is heavily influenced by the lattice mismatch which hinders continuous spreading of the interfacial and subsequent shell layers on some facets. The results exemplify the crystal growth versatility of MOFs to accommodate large lattice mismatch, to house many more functional defects in a coreshell MOF than either of the component MOFs, and has broader implications for engineering lattice-mismatched coreshell materials in general.
Real time microscopy reveals the nanoscopic epitaxial growth mechanism and form of a severely lattice-mismatched shell MOF in a coreshell MOF. |
doi_str_mv | 10.1039/c9sc03131f |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c9sc03131f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c9sc03131f</sourcerecordid><originalsourceid>FETCH-rsc_primary_c9sc03131f3</originalsourceid><addsrcrecordid>eNqFTsFqAjEUDGLBRb14F_ID2yabrrLnUvED2rPE58smbbKRl-Cyf28KxR47l3nDzDyGsY0Uz1Ko7gW6BEJJJc2MVY14lfWuVd38cTdiwdYpfYkCpWTb7Ct2_hxu6Lwbep4t8oBg9eBS4NFwr3N2gHUoWmeweOFAU8ra857imO1PSHOIhMmi96VdvEh9-QDckA44RvpesSejfcL1Ly_Z9vD-8XasKcHpSi5omk5_29V__h0xIUkO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unveiling the mechanism of lattice-mismatched crystal growth of a coreshell metalorganic framework</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Pambudi, Fajar I ; Anderson, Michael W ; Attfield, Martin P</creator><creatorcontrib>Pambudi, Fajar I ; Anderson, Michael W ; Attfield, Martin P</creatorcontrib><description>Determining the effect of severe lattice mismatch on the crystal growth mechanism and form of epitaxially grown materials is vital to understand and direct the form and function of such materials. Herein, we report the use of atomic force microscopy to reveal the growth of a shell metalorganic framework (MOF) on all faces of a core MOF that has similar
a
,
b
-lattice parameters but a 32% mismatch in the
c
-lattice parameter. The work shows the mechanism through which the shell MOF overcomes the core terrace height mismatch depends on that mismatch being reduced before overgrowth of continuous shell layers can occur. This reduction is achieved
via
a process of growth of non-continuous shell layers that are terminated by terrace edges of the core. The crystal form of the shell MOF is heavily influenced by the lattice mismatch which hinders continuous spreading of the interfacial and subsequent shell layers on some facets. The results exemplify the crystal growth versatility of MOFs to accommodate large lattice mismatch, to house many more functional defects in a coreshell MOF than either of the component MOFs, and has broader implications for engineering lattice-mismatched coreshell materials in general.
Real time microscopy reveals the nanoscopic epitaxial growth mechanism and form of a severely lattice-mismatched shell MOF in a coreshell MOF.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc03131f</identifier><ispartof>Chemical science (Cambridge), 2019-10, Vol.1 (41), p.9571-9575</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Pambudi, Fajar I</creatorcontrib><creatorcontrib>Anderson, Michael W</creatorcontrib><creatorcontrib>Attfield, Martin P</creatorcontrib><title>Unveiling the mechanism of lattice-mismatched crystal growth of a coreshell metalorganic framework</title><title>Chemical science (Cambridge)</title><description>Determining the effect of severe lattice mismatch on the crystal growth mechanism and form of epitaxially grown materials is vital to understand and direct the form and function of such materials. Herein, we report the use of atomic force microscopy to reveal the growth of a shell metalorganic framework (MOF) on all faces of a core MOF that has similar
a
,
b
-lattice parameters but a 32% mismatch in the
c
-lattice parameter. The work shows the mechanism through which the shell MOF overcomes the core terrace height mismatch depends on that mismatch being reduced before overgrowth of continuous shell layers can occur. This reduction is achieved
via
a process of growth of non-continuous shell layers that are terminated by terrace edges of the core. The crystal form of the shell MOF is heavily influenced by the lattice mismatch which hinders continuous spreading of the interfacial and subsequent shell layers on some facets. The results exemplify the crystal growth versatility of MOFs to accommodate large lattice mismatch, to house many more functional defects in a coreshell MOF than either of the component MOFs, and has broader implications for engineering lattice-mismatched coreshell materials in general.
Real time microscopy reveals the nanoscopic epitaxial growth mechanism and form of a severely lattice-mismatched shell MOF in a coreshell MOF.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFTsFqAjEUDGLBRb14F_ID2yabrrLnUvED2rPE58smbbKRl-Cyf28KxR47l3nDzDyGsY0Uz1Ko7gW6BEJJJc2MVY14lfWuVd38cTdiwdYpfYkCpWTb7Ct2_hxu6Lwbep4t8oBg9eBS4NFwr3N2gHUoWmeweOFAU8ra857imO1PSHOIhMmi96VdvEh9-QDckA44RvpesSejfcL1Ly_Z9vD-8XasKcHpSi5omk5_29V__h0xIUkO</recordid><startdate>20191024</startdate><enddate>20191024</enddate><creator>Pambudi, Fajar I</creator><creator>Anderson, Michael W</creator><creator>Attfield, Martin P</creator><scope/></search><sort><creationdate>20191024</creationdate><title>Unveiling the mechanism of lattice-mismatched crystal growth of a coreshell metalorganic framework</title><author>Pambudi, Fajar I ; Anderson, Michael W ; Attfield, Martin P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c9sc03131f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pambudi, Fajar I</creatorcontrib><creatorcontrib>Anderson, Michael W</creatorcontrib><creatorcontrib>Attfield, Martin P</creatorcontrib><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pambudi, Fajar I</au><au>Anderson, Michael W</au><au>Attfield, Martin P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the mechanism of lattice-mismatched crystal growth of a coreshell metalorganic framework</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2019-10-24</date><risdate>2019</risdate><volume>1</volume><issue>41</issue><spage>9571</spage><epage>9575</epage><pages>9571-9575</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Determining the effect of severe lattice mismatch on the crystal growth mechanism and form of epitaxially grown materials is vital to understand and direct the form and function of such materials. Herein, we report the use of atomic force microscopy to reveal the growth of a shell metalorganic framework (MOF) on all faces of a core MOF that has similar
a
,
b
-lattice parameters but a 32% mismatch in the
c
-lattice parameter. The work shows the mechanism through which the shell MOF overcomes the core terrace height mismatch depends on that mismatch being reduced before overgrowth of continuous shell layers can occur. This reduction is achieved
via
a process of growth of non-continuous shell layers that are terminated by terrace edges of the core. The crystal form of the shell MOF is heavily influenced by the lattice mismatch which hinders continuous spreading of the interfacial and subsequent shell layers on some facets. The results exemplify the crystal growth versatility of MOFs to accommodate large lattice mismatch, to house many more functional defects in a coreshell MOF than either of the component MOFs, and has broader implications for engineering lattice-mismatched coreshell materials in general.
Real time microscopy reveals the nanoscopic epitaxial growth mechanism and form of a severely lattice-mismatched shell MOF in a coreshell MOF.</abstract><doi>10.1039/c9sc03131f</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2019-10, Vol.1 (41), p.9571-9575 |
issn | 2041-6520 2041-6539 |
language | |
recordid | cdi_rsc_primary_c9sc03131f |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
title | Unveiling the mechanism of lattice-mismatched crystal growth of a coreshell metalorganic framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20mechanism%20of%20lattice-mismatched%20crystal%20growth%20of%20a%20coreshell%20metalorganic%20framework&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Pambudi,%20Fajar%20I&rft.date=2019-10-24&rft.volume=1&rft.issue=41&rft.spage=9571&rft.epage=9575&rft.pages=9571-9575&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc03131f&rft_dat=%3Crsc%3Ec9sc03131f%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |