Fe doped NiP nanosheet arrays with rich P vacancies phase transformation for efficient overall water splitting

Proper vacancy engineering is considered as a promising strategy to improve intrinsic activity, but it is challenging to construct rich vacancies by a simple strategy. Herein, Fe doped Ni 5 P 4 nanosheet arrays with rich P vacancies are developed via a facile phase transformation strategy. Based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-03, Vol.12 (1), p.624-621
Hauptverfasser: Qi, Junlei, Xu, Tianxiong, Cao, Jian, Guo, Shu, Zhong, Zhengxiang, Feng, Jicai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 621
container_issue 1
container_start_page 624
container_title Nanoscale
container_volume 12
creator Qi, Junlei
Xu, Tianxiong
Cao, Jian
Guo, Shu
Zhong, Zhengxiang
Feng, Jicai
description Proper vacancy engineering is considered as a promising strategy to improve intrinsic activity, but it is challenging to construct rich vacancies by a simple strategy. Herein, Fe doped Ni 5 P 4 nanosheet arrays with rich P vacancies are developed via a facile phase transformation strategy. Based on systematic investigations, we have demonstrated that an optimized surface electronic structure, abundant active sites and improved charge transport capability can be effectively achieved by vacancy engineering. Consequently, Fe doped Ni 5 P 4 with rich vacancies show remarkable catalytic performances with 94.5 mV for the hydrogen evolution reaction (HER) and 217.3 mV for the oxygen evolution reaction (OER) at 10 mA cm −2 , respectively, as well as good durability. When directly employed as working electrodes, the as-obtained Fe doped Ni 5 P 4 with rich vacancies can attain 10 mA cm −2 at a low voltage of 1.59 V. This work demonstrates a feasible strategy for rationally fabricating electrocatalysts with rich vacancies via a simple phase transformation. A simple phase transformation strategy to construct rich vacancy defects without special equipment is achieved.
doi_str_mv 10.1039/c9nr10240j
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c9nr10240j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c9nr10240j</sourcerecordid><originalsourceid>FETCH-rsc_primary_c9nr10240j3</originalsourceid><addsrcrecordid>eNqFjzFLA0EQRpegYExs7IXxB8Ts3R4XrhaDlaSwP4a92dyGy-wysyTk35tCtNPqe_Be8xnzWNmXyrpu7TuWytaNPczMvLaNXTm3qW9-uG3uzL3qwdq2c62bG94SDCnTAB9xB4ycdCQqgCJ4UTjHMoJEP8IOTuiRfSSFPKISFEHWkOSIJSaGKwGFEK8FF0gnEpwmOGMhAc1TLCXyfmluA05KD9-7ME_bt8_X95Wo77PEI8ql_z3h_vfPf_k-D8F9AZPcWAM</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fe doped NiP nanosheet arrays with rich P vacancies phase transformation for efficient overall water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Qi, Junlei ; Xu, Tianxiong ; Cao, Jian ; Guo, Shu ; Zhong, Zhengxiang ; Feng, Jicai</creator><creatorcontrib>Qi, Junlei ; Xu, Tianxiong ; Cao, Jian ; Guo, Shu ; Zhong, Zhengxiang ; Feng, Jicai</creatorcontrib><description>Proper vacancy engineering is considered as a promising strategy to improve intrinsic activity, but it is challenging to construct rich vacancies by a simple strategy. Herein, Fe doped Ni 5 P 4 nanosheet arrays with rich P vacancies are developed via a facile phase transformation strategy. Based on systematic investigations, we have demonstrated that an optimized surface electronic structure, abundant active sites and improved charge transport capability can be effectively achieved by vacancy engineering. Consequently, Fe doped Ni 5 P 4 with rich vacancies show remarkable catalytic performances with 94.5 mV for the hydrogen evolution reaction (HER) and 217.3 mV for the oxygen evolution reaction (OER) at 10 mA cm −2 , respectively, as well as good durability. When directly employed as working electrodes, the as-obtained Fe doped Ni 5 P 4 with rich vacancies can attain 10 mA cm −2 at a low voltage of 1.59 V. This work demonstrates a feasible strategy for rationally fabricating electrocatalysts with rich vacancies via a simple phase transformation. A simple phase transformation strategy to construct rich vacancy defects without special equipment is achieved.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr10240j</identifier><language>eng</language><ispartof>Nanoscale, 2020-03, Vol.12 (1), p.624-621</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Qi, Junlei</creatorcontrib><creatorcontrib>Xu, Tianxiong</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Guo, Shu</creatorcontrib><creatorcontrib>Zhong, Zhengxiang</creatorcontrib><creatorcontrib>Feng, Jicai</creatorcontrib><title>Fe doped NiP nanosheet arrays with rich P vacancies phase transformation for efficient overall water splitting</title><title>Nanoscale</title><description>Proper vacancy engineering is considered as a promising strategy to improve intrinsic activity, but it is challenging to construct rich vacancies by a simple strategy. Herein, Fe doped Ni 5 P 4 nanosheet arrays with rich P vacancies are developed via a facile phase transformation strategy. Based on systematic investigations, we have demonstrated that an optimized surface electronic structure, abundant active sites and improved charge transport capability can be effectively achieved by vacancy engineering. Consequently, Fe doped Ni 5 P 4 with rich vacancies show remarkable catalytic performances with 94.5 mV for the hydrogen evolution reaction (HER) and 217.3 mV for the oxygen evolution reaction (OER) at 10 mA cm −2 , respectively, as well as good durability. When directly employed as working electrodes, the as-obtained Fe doped Ni 5 P 4 with rich vacancies can attain 10 mA cm −2 at a low voltage of 1.59 V. This work demonstrates a feasible strategy for rationally fabricating electrocatalysts with rich vacancies via a simple phase transformation. A simple phase transformation strategy to construct rich vacancy defects without special equipment is achieved.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjzFLA0EQRpegYExs7IXxB8Ts3R4XrhaDlaSwP4a92dyGy-wysyTk35tCtNPqe_Be8xnzWNmXyrpu7TuWytaNPczMvLaNXTm3qW9-uG3uzL3qwdq2c62bG94SDCnTAB9xB4ycdCQqgCJ4UTjHMoJEP8IOTuiRfSSFPKISFEHWkOSIJSaGKwGFEK8FF0gnEpwmOGMhAc1TLCXyfmluA05KD9-7ME_bt8_X95Wo77PEI8ql_z3h_vfPf_k-D8F9AZPcWAM</recordid><startdate>20200312</startdate><enddate>20200312</enddate><creator>Qi, Junlei</creator><creator>Xu, Tianxiong</creator><creator>Cao, Jian</creator><creator>Guo, Shu</creator><creator>Zhong, Zhengxiang</creator><creator>Feng, Jicai</creator><scope/></search><sort><creationdate>20200312</creationdate><title>Fe doped NiP nanosheet arrays with rich P vacancies phase transformation for efficient overall water splitting</title><author>Qi, Junlei ; Xu, Tianxiong ; Cao, Jian ; Guo, Shu ; Zhong, Zhengxiang ; Feng, Jicai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c9nr10240j3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Junlei</creatorcontrib><creatorcontrib>Xu, Tianxiong</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Guo, Shu</creatorcontrib><creatorcontrib>Zhong, Zhengxiang</creatorcontrib><creatorcontrib>Feng, Jicai</creatorcontrib><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Junlei</au><au>Xu, Tianxiong</au><au>Cao, Jian</au><au>Guo, Shu</au><au>Zhong, Zhengxiang</au><au>Feng, Jicai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fe doped NiP nanosheet arrays with rich P vacancies phase transformation for efficient overall water splitting</atitle><jtitle>Nanoscale</jtitle><date>2020-03-12</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>624</spage><epage>621</epage><pages>624-621</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Proper vacancy engineering is considered as a promising strategy to improve intrinsic activity, but it is challenging to construct rich vacancies by a simple strategy. Herein, Fe doped Ni 5 P 4 nanosheet arrays with rich P vacancies are developed via a facile phase transformation strategy. Based on systematic investigations, we have demonstrated that an optimized surface electronic structure, abundant active sites and improved charge transport capability can be effectively achieved by vacancy engineering. Consequently, Fe doped Ni 5 P 4 with rich vacancies show remarkable catalytic performances with 94.5 mV for the hydrogen evolution reaction (HER) and 217.3 mV for the oxygen evolution reaction (OER) at 10 mA cm −2 , respectively, as well as good durability. When directly employed as working electrodes, the as-obtained Fe doped Ni 5 P 4 with rich vacancies can attain 10 mA cm −2 at a low voltage of 1.59 V. This work demonstrates a feasible strategy for rationally fabricating electrocatalysts with rich vacancies via a simple phase transformation. A simple phase transformation strategy to construct rich vacancy defects without special equipment is achieved.</abstract><doi>10.1039/c9nr10240j</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-03, Vol.12 (1), p.624-621
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_c9nr10240j
source Royal Society Of Chemistry Journals 2008-
title Fe doped NiP nanosheet arrays with rich P vacancies phase transformation for efficient overall water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fe%20doped%20NiP%20nanosheet%20arrays%20with%20rich%20P%20vacancies%20phase%20transformation%20for%20efficient%20overall%20water%20splitting&rft.jtitle=Nanoscale&rft.au=Qi,%20Junlei&rft.date=2020-03-12&rft.volume=12&rft.issue=1&rft.spage=624&rft.epage=621&rft.pages=624-621&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr10240j&rft_dat=%3Crsc%3Ec9nr10240j%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true