A practical method for fabricating superparamagnetic films and the mechanism involved

Due to the widespread applications of biosensors, such as in magnetic resonance imaging, cancer detection and drug delivery, the use of superparamagnetic materials for preparing biosensors has increased greatly. We report herein on a strategy toward fabrication of a nanoscale biosensor composed of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-07, Vol.12 (26), p.1496-1415
Hauptverfasser: Jiang, Pei-Cheng, Chang, Cheng-Hsun-Tony, Hsieh, Chen-Yuan, Su, Wei-Bin, Tsay, Jyh-Shen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1415
container_issue 26
container_start_page 1496
container_title Nanoscale
container_volume 12
creator Jiang, Pei-Cheng
Chang, Cheng-Hsun-Tony
Hsieh, Chen-Yuan
Su, Wei-Bin
Tsay, Jyh-Shen
description Due to the widespread applications of biosensors, such as in magnetic resonance imaging, cancer detection and drug delivery, the use of superparamagnetic materials for preparing biosensors has increased greatly. We report herein on a strategy toward fabrication of a nanoscale biosensor composed of superparamagnetic films. On increasing the film thickness of magnetic layers, a phase transition typically occurs from either a low-Curie-temperature state or a superparamagnetic state to a ferromagnetic state. A new finding is demonstrated wherein a phase transition of such a superparamagnetic phase can be induced by controlling the thickness of ultrathin ferromagnetic layers with perpendicular magnetic anisotropy. Both the M - H curve with zero coercive force at 300 K and deviations of the normalized hysteresis loop at 2 K confirm the superparamagnetic state of Co/Ir(111) at room temperature. An overstrained film transforming into clusters (OFTC) model based on the new finding and our experimental evidence is proposed for modeling this phenomenon. From the energetic point of view of the OFTC model, we propose a limited distortion mechanism that can be useful in determining the critical thickness for the phase transition. This mechanism considers the balance between interfacial strain energy and surface free energy. A method for producing superparamagnetic films by taking advantage of the accumulation of strain and relaxation is reported. A schematic plot showing the OFTC model for describing morphological evolution and magnetic phase transition to form a superparamagnetic state.
doi_str_mv 10.1039/c9nr10053a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9nr10053a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421442094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f1a934f477bb94780fde268324d4a7d641635ccb7a23ec0af5e954fdbc09456c3</originalsourceid><addsrcrecordid>eNp9kdtLwzAYxYMobl5efFcivohQTfOl7fI4hjcYCuKeS5rL1tGmNWkH_vdmbk7wwacvfOeXw8kJQmcxuY0J8DvJrYsJSUDsoSEljEQAGd3fnVM2QEfeLwlJOaRwiAZAkxEDgCGajXHrhOxKKSpc627RKGwah40oXNh1pZ1j37fatcKJWsytDig2ZVV7LKzC3UKHa3IhbOlrXNpVU620OkEHRlRen27nMZo93L9PnqLp6-PzZDyNZMjRRSYWHJhhWVYUnGUjYpSm6QgoU0xkKmVxComURSYoaEmESTRPmFGFJJwlqYRjdL3xbV3z0Wvf5XXppa4qYXXT-5yyOIP1m0cBvfqDLpve2ZAuUDRmjAbPQN1sKOka7502eevKWrjPPCb5uux8wl_evsseB_hia9kXtVY79KfdAJxvAOflTv39raBf_qfnrTLwBWaqjvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421442094</pqid></control><display><type>article</type><title>A practical method for fabricating superparamagnetic films and the mechanism involved</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Jiang, Pei-Cheng ; Chang, Cheng-Hsun-Tony ; Hsieh, Chen-Yuan ; Su, Wei-Bin ; Tsay, Jyh-Shen</creator><creatorcontrib>Jiang, Pei-Cheng ; Chang, Cheng-Hsun-Tony ; Hsieh, Chen-Yuan ; Su, Wei-Bin ; Tsay, Jyh-Shen</creatorcontrib><description>Due to the widespread applications of biosensors, such as in magnetic resonance imaging, cancer detection and drug delivery, the use of superparamagnetic materials for preparing biosensors has increased greatly. We report herein on a strategy toward fabrication of a nanoscale biosensor composed of superparamagnetic films. On increasing the film thickness of magnetic layers, a phase transition typically occurs from either a low-Curie-temperature state or a superparamagnetic state to a ferromagnetic state. A new finding is demonstrated wherein a phase transition of such a superparamagnetic phase can be induced by controlling the thickness of ultrathin ferromagnetic layers with perpendicular magnetic anisotropy. Both the M - H curve with zero coercive force at 300 K and deviations of the normalized hysteresis loop at 2 K confirm the superparamagnetic state of Co/Ir(111) at room temperature. An overstrained film transforming into clusters (OFTC) model based on the new finding and our experimental evidence is proposed for modeling this phenomenon. From the energetic point of view of the OFTC model, we propose a limited distortion mechanism that can be useful in determining the critical thickness for the phase transition. This mechanism considers the balance between interfacial strain energy and surface free energy. A method for producing superparamagnetic films by taking advantage of the accumulation of strain and relaxation is reported. A schematic plot showing the OFTC model for describing morphological evolution and magnetic phase transition to form a superparamagnetic state.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr10053a</identifier><identifier>PMID: 32584333</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anisotropy ; Biosensors ; Coercivity ; Curie temperature ; Drug delivery systems ; Ferromagnetism ; Film thickness ; Free energy ; Hysteresis loops ; Magnetic anisotropy ; Magnetic Iron Oxide Nanoparticles ; Magnetic resonance imaging ; Magnetics ; Magnets ; Phase Transition ; Phase transitions ; Production methods ; Room temperature ; Surface tension</subject><ispartof>Nanoscale, 2020-07, Vol.12 (26), p.1496-1415</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f1a934f477bb94780fde268324d4a7d641635ccb7a23ec0af5e954fdbc09456c3</citedby><cites>FETCH-LOGICAL-c363t-f1a934f477bb94780fde268324d4a7d641635ccb7a23ec0af5e954fdbc09456c3</cites><orcidid>0000-0002-0645-9723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32584333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Pei-Cheng</creatorcontrib><creatorcontrib>Chang, Cheng-Hsun-Tony</creatorcontrib><creatorcontrib>Hsieh, Chen-Yuan</creatorcontrib><creatorcontrib>Su, Wei-Bin</creatorcontrib><creatorcontrib>Tsay, Jyh-Shen</creatorcontrib><title>A practical method for fabricating superparamagnetic films and the mechanism involved</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Due to the widespread applications of biosensors, such as in magnetic resonance imaging, cancer detection and drug delivery, the use of superparamagnetic materials for preparing biosensors has increased greatly. We report herein on a strategy toward fabrication of a nanoscale biosensor composed of superparamagnetic films. On increasing the film thickness of magnetic layers, a phase transition typically occurs from either a low-Curie-temperature state or a superparamagnetic state to a ferromagnetic state. A new finding is demonstrated wherein a phase transition of such a superparamagnetic phase can be induced by controlling the thickness of ultrathin ferromagnetic layers with perpendicular magnetic anisotropy. Both the M - H curve with zero coercive force at 300 K and deviations of the normalized hysteresis loop at 2 K confirm the superparamagnetic state of Co/Ir(111) at room temperature. An overstrained film transforming into clusters (OFTC) model based on the new finding and our experimental evidence is proposed for modeling this phenomenon. From the energetic point of view of the OFTC model, we propose a limited distortion mechanism that can be useful in determining the critical thickness for the phase transition. This mechanism considers the balance between interfacial strain energy and surface free energy. A method for producing superparamagnetic films by taking advantage of the accumulation of strain and relaxation is reported. A schematic plot showing the OFTC model for describing morphological evolution and magnetic phase transition to form a superparamagnetic state.</description><subject>Anisotropy</subject><subject>Biosensors</subject><subject>Coercivity</subject><subject>Curie temperature</subject><subject>Drug delivery systems</subject><subject>Ferromagnetism</subject><subject>Film thickness</subject><subject>Free energy</subject><subject>Hysteresis loops</subject><subject>Magnetic anisotropy</subject><subject>Magnetic Iron Oxide Nanoparticles</subject><subject>Magnetic resonance imaging</subject><subject>Magnetics</subject><subject>Magnets</subject><subject>Phase Transition</subject><subject>Phase transitions</subject><subject>Production methods</subject><subject>Room temperature</subject><subject>Surface tension</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kdtLwzAYxYMobl5efFcivohQTfOl7fI4hjcYCuKeS5rL1tGmNWkH_vdmbk7wwacvfOeXw8kJQmcxuY0J8DvJrYsJSUDsoSEljEQAGd3fnVM2QEfeLwlJOaRwiAZAkxEDgCGajXHrhOxKKSpc627RKGwah40oXNh1pZ1j37fatcKJWsytDig2ZVV7LKzC3UKHa3IhbOlrXNpVU620OkEHRlRen27nMZo93L9PnqLp6-PzZDyNZMjRRSYWHJhhWVYUnGUjYpSm6QgoU0xkKmVxComURSYoaEmESTRPmFGFJJwlqYRjdL3xbV3z0Wvf5XXppa4qYXXT-5yyOIP1m0cBvfqDLpve2ZAuUDRmjAbPQN1sKOka7502eevKWrjPPCb5uux8wl_evsseB_hia9kXtVY79KfdAJxvAOflTv39raBf_qfnrTLwBWaqjvM</recordid><startdate>20200714</startdate><enddate>20200714</enddate><creator>Jiang, Pei-Cheng</creator><creator>Chang, Cheng-Hsun-Tony</creator><creator>Hsieh, Chen-Yuan</creator><creator>Su, Wei-Bin</creator><creator>Tsay, Jyh-Shen</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0645-9723</orcidid></search><sort><creationdate>20200714</creationdate><title>A practical method for fabricating superparamagnetic films and the mechanism involved</title><author>Jiang, Pei-Cheng ; Chang, Cheng-Hsun-Tony ; Hsieh, Chen-Yuan ; Su, Wei-Bin ; Tsay, Jyh-Shen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f1a934f477bb94780fde268324d4a7d641635ccb7a23ec0af5e954fdbc09456c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Biosensors</topic><topic>Coercivity</topic><topic>Curie temperature</topic><topic>Drug delivery systems</topic><topic>Ferromagnetism</topic><topic>Film thickness</topic><topic>Free energy</topic><topic>Hysteresis loops</topic><topic>Magnetic anisotropy</topic><topic>Magnetic Iron Oxide Nanoparticles</topic><topic>Magnetic resonance imaging</topic><topic>Magnetics</topic><topic>Magnets</topic><topic>Phase Transition</topic><topic>Phase transitions</topic><topic>Production methods</topic><topic>Room temperature</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Pei-Cheng</creatorcontrib><creatorcontrib>Chang, Cheng-Hsun-Tony</creatorcontrib><creatorcontrib>Hsieh, Chen-Yuan</creatorcontrib><creatorcontrib>Su, Wei-Bin</creatorcontrib><creatorcontrib>Tsay, Jyh-Shen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Pei-Cheng</au><au>Chang, Cheng-Hsun-Tony</au><au>Hsieh, Chen-Yuan</au><au>Su, Wei-Bin</au><au>Tsay, Jyh-Shen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A practical method for fabricating superparamagnetic films and the mechanism involved</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2020-07-14</date><risdate>2020</risdate><volume>12</volume><issue>26</issue><spage>1496</spage><epage>1415</epage><pages>1496-1415</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Due to the widespread applications of biosensors, such as in magnetic resonance imaging, cancer detection and drug delivery, the use of superparamagnetic materials for preparing biosensors has increased greatly. We report herein on a strategy toward fabrication of a nanoscale biosensor composed of superparamagnetic films. On increasing the film thickness of magnetic layers, a phase transition typically occurs from either a low-Curie-temperature state or a superparamagnetic state to a ferromagnetic state. A new finding is demonstrated wherein a phase transition of such a superparamagnetic phase can be induced by controlling the thickness of ultrathin ferromagnetic layers with perpendicular magnetic anisotropy. Both the M - H curve with zero coercive force at 300 K and deviations of the normalized hysteresis loop at 2 K confirm the superparamagnetic state of Co/Ir(111) at room temperature. An overstrained film transforming into clusters (OFTC) model based on the new finding and our experimental evidence is proposed for modeling this phenomenon. From the energetic point of view of the OFTC model, we propose a limited distortion mechanism that can be useful in determining the critical thickness for the phase transition. This mechanism considers the balance between interfacial strain energy and surface free energy. A method for producing superparamagnetic films by taking advantage of the accumulation of strain and relaxation is reported. A schematic plot showing the OFTC model for describing morphological evolution and magnetic phase transition to form a superparamagnetic state.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32584333</pmid><doi>10.1039/c9nr10053a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0645-9723</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-07, Vol.12 (26), p.1496-1415
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_c9nr10053a
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Anisotropy
Biosensors
Coercivity
Curie temperature
Drug delivery systems
Ferromagnetism
Film thickness
Free energy
Hysteresis loops
Magnetic anisotropy
Magnetic Iron Oxide Nanoparticles
Magnetic resonance imaging
Magnetics
Magnets
Phase Transition
Phase transitions
Production methods
Room temperature
Surface tension
title A practical method for fabricating superparamagnetic films and the mechanism involved
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20practical%20method%20for%20fabricating%20superparamagnetic%20films%20and%20the%20mechanism%20involved&rft.jtitle=Nanoscale&rft.au=Jiang,%20Pei-Cheng&rft.date=2020-07-14&rft.volume=12&rft.issue=26&rft.spage=1496&rft.epage=1415&rft.pages=1496-1415&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr10053a&rft_dat=%3Cproquest_rsc_p%3E2421442094%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421442094&rft_id=info:pmid/32584333&rfr_iscdi=true