A practical method for fabricating superparamagnetic films and the mechanism involved
Due to the widespread applications of biosensors, such as in magnetic resonance imaging, cancer detection and drug delivery, the use of superparamagnetic materials for preparing biosensors has increased greatly. We report herein on a strategy toward fabrication of a nanoscale biosensor composed of s...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2020-07, Vol.12 (26), p.1496-1415 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1415 |
---|---|
container_issue | 26 |
container_start_page | 1496 |
container_title | Nanoscale |
container_volume | 12 |
creator | Jiang, Pei-Cheng Chang, Cheng-Hsun-Tony Hsieh, Chen-Yuan Su, Wei-Bin Tsay, Jyh-Shen |
description | Due to the widespread applications of biosensors, such as in magnetic resonance imaging, cancer detection and drug delivery, the use of superparamagnetic materials for preparing biosensors has increased greatly. We report herein on a strategy toward fabrication of a nanoscale biosensor composed of superparamagnetic films. On increasing the film thickness of magnetic layers, a phase transition typically occurs from either a low-Curie-temperature state or a superparamagnetic state to a ferromagnetic state. A new finding is demonstrated wherein a phase transition of such a superparamagnetic phase can be induced by controlling the thickness of ultrathin ferromagnetic layers with perpendicular magnetic anisotropy. Both the
M
-
H
curve with zero coercive force at 300 K and deviations of the normalized hysteresis loop at 2 K confirm the superparamagnetic state of Co/Ir(111) at room temperature. An overstrained film transforming into clusters (OFTC) model based on the new finding and our experimental evidence is proposed for modeling this phenomenon. From the energetic point of view of the OFTC model, we propose a limited distortion mechanism that can be useful in determining the critical thickness for the phase transition. This mechanism considers the balance between interfacial strain energy and surface free energy. A method for producing superparamagnetic films by taking advantage of the accumulation of strain and relaxation is reported.
A schematic plot showing the OFTC model for describing morphological evolution and magnetic phase transition to form a superparamagnetic state. |
doi_str_mv | 10.1039/c9nr10053a |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9nr10053a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421442094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f1a934f477bb94780fde268324d4a7d641635ccb7a23ec0af5e954fdbc09456c3</originalsourceid><addsrcrecordid>eNp9kdtLwzAYxYMobl5efFcivohQTfOl7fI4hjcYCuKeS5rL1tGmNWkH_vdmbk7wwacvfOeXw8kJQmcxuY0J8DvJrYsJSUDsoSEljEQAGd3fnVM2QEfeLwlJOaRwiAZAkxEDgCGajXHrhOxKKSpc627RKGwah40oXNh1pZ1j37fatcKJWsytDig2ZVV7LKzC3UKHa3IhbOlrXNpVU620OkEHRlRen27nMZo93L9PnqLp6-PzZDyNZMjRRSYWHJhhWVYUnGUjYpSm6QgoU0xkKmVxComURSYoaEmESTRPmFGFJJwlqYRjdL3xbV3z0Wvf5XXppa4qYXXT-5yyOIP1m0cBvfqDLpve2ZAuUDRmjAbPQN1sKOka7502eevKWrjPPCb5uux8wl_evsseB_hia9kXtVY79KfdAJxvAOflTv39raBf_qfnrTLwBWaqjvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421442094</pqid></control><display><type>article</type><title>A practical method for fabricating superparamagnetic films and the mechanism involved</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Jiang, Pei-Cheng ; Chang, Cheng-Hsun-Tony ; Hsieh, Chen-Yuan ; Su, Wei-Bin ; Tsay, Jyh-Shen</creator><creatorcontrib>Jiang, Pei-Cheng ; Chang, Cheng-Hsun-Tony ; Hsieh, Chen-Yuan ; Su, Wei-Bin ; Tsay, Jyh-Shen</creatorcontrib><description>Due to the widespread applications of biosensors, such as in magnetic resonance imaging, cancer detection and drug delivery, the use of superparamagnetic materials for preparing biosensors has increased greatly. We report herein on a strategy toward fabrication of a nanoscale biosensor composed of superparamagnetic films. On increasing the film thickness of magnetic layers, a phase transition typically occurs from either a low-Curie-temperature state or a superparamagnetic state to a ferromagnetic state. A new finding is demonstrated wherein a phase transition of such a superparamagnetic phase can be induced by controlling the thickness of ultrathin ferromagnetic layers with perpendicular magnetic anisotropy. Both the
M
-
H
curve with zero coercive force at 300 K and deviations of the normalized hysteresis loop at 2 K confirm the superparamagnetic state of Co/Ir(111) at room temperature. An overstrained film transforming into clusters (OFTC) model based on the new finding and our experimental evidence is proposed for modeling this phenomenon. From the energetic point of view of the OFTC model, we propose a limited distortion mechanism that can be useful in determining the critical thickness for the phase transition. This mechanism considers the balance between interfacial strain energy and surface free energy. A method for producing superparamagnetic films by taking advantage of the accumulation of strain and relaxation is reported.
A schematic plot showing the OFTC model for describing morphological evolution and magnetic phase transition to form a superparamagnetic state.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr10053a</identifier><identifier>PMID: 32584333</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anisotropy ; Biosensors ; Coercivity ; Curie temperature ; Drug delivery systems ; Ferromagnetism ; Film thickness ; Free energy ; Hysteresis loops ; Magnetic anisotropy ; Magnetic Iron Oxide Nanoparticles ; Magnetic resonance imaging ; Magnetics ; Magnets ; Phase Transition ; Phase transitions ; Production methods ; Room temperature ; Surface tension</subject><ispartof>Nanoscale, 2020-07, Vol.12 (26), p.1496-1415</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f1a934f477bb94780fde268324d4a7d641635ccb7a23ec0af5e954fdbc09456c3</citedby><cites>FETCH-LOGICAL-c363t-f1a934f477bb94780fde268324d4a7d641635ccb7a23ec0af5e954fdbc09456c3</cites><orcidid>0000-0002-0645-9723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32584333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Pei-Cheng</creatorcontrib><creatorcontrib>Chang, Cheng-Hsun-Tony</creatorcontrib><creatorcontrib>Hsieh, Chen-Yuan</creatorcontrib><creatorcontrib>Su, Wei-Bin</creatorcontrib><creatorcontrib>Tsay, Jyh-Shen</creatorcontrib><title>A practical method for fabricating superparamagnetic films and the mechanism involved</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Due to the widespread applications of biosensors, such as in magnetic resonance imaging, cancer detection and drug delivery, the use of superparamagnetic materials for preparing biosensors has increased greatly. We report herein on a strategy toward fabrication of a nanoscale biosensor composed of superparamagnetic films. On increasing the film thickness of magnetic layers, a phase transition typically occurs from either a low-Curie-temperature state or a superparamagnetic state to a ferromagnetic state. A new finding is demonstrated wherein a phase transition of such a superparamagnetic phase can be induced by controlling the thickness of ultrathin ferromagnetic layers with perpendicular magnetic anisotropy. Both the
M
-
H
curve with zero coercive force at 300 K and deviations of the normalized hysteresis loop at 2 K confirm the superparamagnetic state of Co/Ir(111) at room temperature. An overstrained film transforming into clusters (OFTC) model based on the new finding and our experimental evidence is proposed for modeling this phenomenon. From the energetic point of view of the OFTC model, we propose a limited distortion mechanism that can be useful in determining the critical thickness for the phase transition. This mechanism considers the balance between interfacial strain energy and surface free energy. A method for producing superparamagnetic films by taking advantage of the accumulation of strain and relaxation is reported.
A schematic plot showing the OFTC model for describing morphological evolution and magnetic phase transition to form a superparamagnetic state.</description><subject>Anisotropy</subject><subject>Biosensors</subject><subject>Coercivity</subject><subject>Curie temperature</subject><subject>Drug delivery systems</subject><subject>Ferromagnetism</subject><subject>Film thickness</subject><subject>Free energy</subject><subject>Hysteresis loops</subject><subject>Magnetic anisotropy</subject><subject>Magnetic Iron Oxide Nanoparticles</subject><subject>Magnetic resonance imaging</subject><subject>Magnetics</subject><subject>Magnets</subject><subject>Phase Transition</subject><subject>Phase transitions</subject><subject>Production methods</subject><subject>Room temperature</subject><subject>Surface tension</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kdtLwzAYxYMobl5efFcivohQTfOl7fI4hjcYCuKeS5rL1tGmNWkH_vdmbk7wwacvfOeXw8kJQmcxuY0J8DvJrYsJSUDsoSEljEQAGd3fnVM2QEfeLwlJOaRwiAZAkxEDgCGajXHrhOxKKSpc627RKGwah40oXNh1pZ1j37fatcKJWsytDig2ZVV7LKzC3UKHa3IhbOlrXNpVU620OkEHRlRen27nMZo93L9PnqLp6-PzZDyNZMjRRSYWHJhhWVYUnGUjYpSm6QgoU0xkKmVxComURSYoaEmESTRPmFGFJJwlqYRjdL3xbV3z0Wvf5XXppa4qYXXT-5yyOIP1m0cBvfqDLpve2ZAuUDRmjAbPQN1sKOka7502eevKWrjPPCb5uux8wl_evsseB_hia9kXtVY79KfdAJxvAOflTv39raBf_qfnrTLwBWaqjvM</recordid><startdate>20200714</startdate><enddate>20200714</enddate><creator>Jiang, Pei-Cheng</creator><creator>Chang, Cheng-Hsun-Tony</creator><creator>Hsieh, Chen-Yuan</creator><creator>Su, Wei-Bin</creator><creator>Tsay, Jyh-Shen</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0645-9723</orcidid></search><sort><creationdate>20200714</creationdate><title>A practical method for fabricating superparamagnetic films and the mechanism involved</title><author>Jiang, Pei-Cheng ; Chang, Cheng-Hsun-Tony ; Hsieh, Chen-Yuan ; Su, Wei-Bin ; Tsay, Jyh-Shen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f1a934f477bb94780fde268324d4a7d641635ccb7a23ec0af5e954fdbc09456c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Biosensors</topic><topic>Coercivity</topic><topic>Curie temperature</topic><topic>Drug delivery systems</topic><topic>Ferromagnetism</topic><topic>Film thickness</topic><topic>Free energy</topic><topic>Hysteresis loops</topic><topic>Magnetic anisotropy</topic><topic>Magnetic Iron Oxide Nanoparticles</topic><topic>Magnetic resonance imaging</topic><topic>Magnetics</topic><topic>Magnets</topic><topic>Phase Transition</topic><topic>Phase transitions</topic><topic>Production methods</topic><topic>Room temperature</topic><topic>Surface tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Pei-Cheng</creatorcontrib><creatorcontrib>Chang, Cheng-Hsun-Tony</creatorcontrib><creatorcontrib>Hsieh, Chen-Yuan</creatorcontrib><creatorcontrib>Su, Wei-Bin</creatorcontrib><creatorcontrib>Tsay, Jyh-Shen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Pei-Cheng</au><au>Chang, Cheng-Hsun-Tony</au><au>Hsieh, Chen-Yuan</au><au>Su, Wei-Bin</au><au>Tsay, Jyh-Shen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A practical method for fabricating superparamagnetic films and the mechanism involved</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2020-07-14</date><risdate>2020</risdate><volume>12</volume><issue>26</issue><spage>1496</spage><epage>1415</epage><pages>1496-1415</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Due to the widespread applications of biosensors, such as in magnetic resonance imaging, cancer detection and drug delivery, the use of superparamagnetic materials for preparing biosensors has increased greatly. We report herein on a strategy toward fabrication of a nanoscale biosensor composed of superparamagnetic films. On increasing the film thickness of magnetic layers, a phase transition typically occurs from either a low-Curie-temperature state or a superparamagnetic state to a ferromagnetic state. A new finding is demonstrated wherein a phase transition of such a superparamagnetic phase can be induced by controlling the thickness of ultrathin ferromagnetic layers with perpendicular magnetic anisotropy. Both the
M
-
H
curve with zero coercive force at 300 K and deviations of the normalized hysteresis loop at 2 K confirm the superparamagnetic state of Co/Ir(111) at room temperature. An overstrained film transforming into clusters (OFTC) model based on the new finding and our experimental evidence is proposed for modeling this phenomenon. From the energetic point of view of the OFTC model, we propose a limited distortion mechanism that can be useful in determining the critical thickness for the phase transition. This mechanism considers the balance between interfacial strain energy and surface free energy. A method for producing superparamagnetic films by taking advantage of the accumulation of strain and relaxation is reported.
A schematic plot showing the OFTC model for describing morphological evolution and magnetic phase transition to form a superparamagnetic state.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32584333</pmid><doi>10.1039/c9nr10053a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0645-9723</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2020-07, Vol.12 (26), p.1496-1415 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_rsc_primary_c9nr10053a |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | Anisotropy Biosensors Coercivity Curie temperature Drug delivery systems Ferromagnetism Film thickness Free energy Hysteresis loops Magnetic anisotropy Magnetic Iron Oxide Nanoparticles Magnetic resonance imaging Magnetics Magnets Phase Transition Phase transitions Production methods Room temperature Surface tension |
title | A practical method for fabricating superparamagnetic films and the mechanism involved |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20practical%20method%20for%20fabricating%20superparamagnetic%20films%20and%20the%20mechanism%20involved&rft.jtitle=Nanoscale&rft.au=Jiang,%20Pei-Cheng&rft.date=2020-07-14&rft.volume=12&rft.issue=26&rft.spage=1496&rft.epage=1415&rft.pages=1496-1415&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr10053a&rft_dat=%3Cproquest_rsc_p%3E2421442094%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421442094&rft_id=info:pmid/32584333&rfr_iscdi=true |