Interfacial icelike water local doping of graphene
Charge transfer at interfaces plays a critical role in the performance of graphene based electronic devices. However, separate control of the charge transfer process in the graphene/SiO 2 system is still challenging. Herein, we investigate the effects of the trapped interfacial icelike water layer o...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2019-11, Vol.11 (41), p.19334-1934 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1934 |
---|---|
container_issue | 41 |
container_start_page | 19334 |
container_title | Nanoscale |
container_volume | 11 |
creator | Hong, Yue Wang, Sanmei Li, Qiang Song, Xin Wang, Zegao Zhang, Xi Besenbacher, Flemming Dong, Mingdong |
description | Charge transfer at interfaces plays a critical role in the performance of graphene based electronic devices. However, separate control of the charge transfer process in the graphene/SiO
2
system is still challenging. Herein, we investigate the effects of the trapped interfacial icelike water layer on the charge transfer between graphene and the SiO
2
/Si substrate through recording the surface potential changes induced by partial removal of the interfacial icelike water layer upon
in situ
heating. The scanning Kelvin probe microscopy surface potential mapping shows that the graphene is electronically modified by the icelike water layer as the electron density transfers from graphene to the icelike water layer, resulting in hole-doping of graphene, which was also confirmed by the graphene field effect transistor electrical transport measurements. In addition, the density functional calculations provide in-depth insight into the electronic contributions of the icelike water layer to graphene and the charge transfer mechanism. This research will improve our ability to manipulate graphene's electronic properties for diverse applications, such as humidity sensing.
The interfacial icelike water layer contributed to hole doping in the graphene through charge transfer from graphene to the icelike water layer. |
doi_str_mv | 10.1039/c9nr05832j |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9nr05832j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2308429091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-dc4669a7edc4244dc230edd73289cabbe991a7b3f18f325aa6ceae8d8fa8bd8a3</originalsourceid><addsrcrecordid>eNpdkd9LwzAQx4Mobk5ffFcKvohQTZO0TR7H8MdkKIg-h2tynZ1dW5MV8b83ujnBpzvuPny_x_cIOU7oZUK5ujKqcTSVnC12yJBRQWPOc7a77TMxIAfeLyjNFM_4PhnwRDCe0nRI2LRZoSvBVFBHlcG6esPoA8IsqlsTZrbtqmYetWU0d9C9YoOHZK-E2uPRpo7Iy8318-Qunj3eTifjWWyC_Sq2RmSZghxDw4SwhnGK1uacSWWgKFCpBPKCl4ksOUsBMoOA0soSZGEl8BE5X-t2rn3v0a_0svLhwhoabHuvGctTJaSiWUDP_qGLtndNuE4HVymYoioJ1MWaMq713mGpO1ctwX3qhOrvJPVEPTz9JHkf4NONZF8s0W7R3-gCcLIGnDfb7d8r-BdncXdr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308429091</pqid></control><display><type>article</type><title>Interfacial icelike water local doping of graphene</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Hong, Yue ; Wang, Sanmei ; Li, Qiang ; Song, Xin ; Wang, Zegao ; Zhang, Xi ; Besenbacher, Flemming ; Dong, Mingdong</creator><creatorcontrib>Hong, Yue ; Wang, Sanmei ; Li, Qiang ; Song, Xin ; Wang, Zegao ; Zhang, Xi ; Besenbacher, Flemming ; Dong, Mingdong</creatorcontrib><description>Charge transfer at interfaces plays a critical role in the performance of graphene based electronic devices. However, separate control of the charge transfer process in the graphene/SiO
2
system is still challenging. Herein, we investigate the effects of the trapped interfacial icelike water layer on the charge transfer between graphene and the SiO
2
/Si substrate through recording the surface potential changes induced by partial removal of the interfacial icelike water layer upon
in situ
heating. The scanning Kelvin probe microscopy surface potential mapping shows that the graphene is electronically modified by the icelike water layer as the electron density transfers from graphene to the icelike water layer, resulting in hole-doping of graphene, which was also confirmed by the graphene field effect transistor electrical transport measurements. In addition, the density functional calculations provide in-depth insight into the electronic contributions of the icelike water layer to graphene and the charge transfer mechanism. This research will improve our ability to manipulate graphene's electronic properties for diverse applications, such as humidity sensing.
The interfacial icelike water layer contributed to hole doping in the graphene through charge transfer from graphene to the icelike water layer.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr05832j</identifier><identifier>PMID: 31423505</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Charge transfer ; Doping ; Electron density ; Electronic devices ; Field effect transistors ; Graphene ; Mapping ; Recording ; Semiconductor devices ; Silicon dioxide ; Silicon substrates</subject><ispartof>Nanoscale, 2019-11, Vol.11 (41), p.19334-1934</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-dc4669a7edc4244dc230edd73289cabbe991a7b3f18f325aa6ceae8d8fa8bd8a3</citedby><cites>FETCH-LOGICAL-c337t-dc4669a7edc4244dc230edd73289cabbe991a7b3f18f325aa6ceae8d8fa8bd8a3</cites><orcidid>0000-0002-2910-4773 ; 0000-0002-0033-6538 ; 0000-0002-2025-2171 ; 0000-0003-0028-1335 ; 0000-0003-1056-4152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31423505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Yue</creatorcontrib><creatorcontrib>Wang, Sanmei</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Song, Xin</creatorcontrib><creatorcontrib>Wang, Zegao</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Besenbacher, Flemming</creatorcontrib><creatorcontrib>Dong, Mingdong</creatorcontrib><title>Interfacial icelike water local doping of graphene</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Charge transfer at interfaces plays a critical role in the performance of graphene based electronic devices. However, separate control of the charge transfer process in the graphene/SiO
2
system is still challenging. Herein, we investigate the effects of the trapped interfacial icelike water layer on the charge transfer between graphene and the SiO
2
/Si substrate through recording the surface potential changes induced by partial removal of the interfacial icelike water layer upon
in situ
heating. The scanning Kelvin probe microscopy surface potential mapping shows that the graphene is electronically modified by the icelike water layer as the electron density transfers from graphene to the icelike water layer, resulting in hole-doping of graphene, which was also confirmed by the graphene field effect transistor electrical transport measurements. In addition, the density functional calculations provide in-depth insight into the electronic contributions of the icelike water layer to graphene and the charge transfer mechanism. This research will improve our ability to manipulate graphene's electronic properties for diverse applications, such as humidity sensing.
The interfacial icelike water layer contributed to hole doping in the graphene through charge transfer from graphene to the icelike water layer.</description><subject>Charge transfer</subject><subject>Doping</subject><subject>Electron density</subject><subject>Electronic devices</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Mapping</subject><subject>Recording</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>Silicon substrates</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkd9LwzAQx4Mobk5ffFcKvohQTZO0TR7H8MdkKIg-h2tynZ1dW5MV8b83ujnBpzvuPny_x_cIOU7oZUK5ujKqcTSVnC12yJBRQWPOc7a77TMxIAfeLyjNFM_4PhnwRDCe0nRI2LRZoSvBVFBHlcG6esPoA8IsqlsTZrbtqmYetWU0d9C9YoOHZK-E2uPRpo7Iy8318-Qunj3eTifjWWyC_Sq2RmSZghxDw4SwhnGK1uacSWWgKFCpBPKCl4ksOUsBMoOA0soSZGEl8BE5X-t2rn3v0a_0svLhwhoabHuvGctTJaSiWUDP_qGLtndNuE4HVymYoioJ1MWaMq713mGpO1ctwX3qhOrvJPVEPTz9JHkf4NONZF8s0W7R3-gCcLIGnDfb7d8r-BdncXdr</recordid><startdate>20191107</startdate><enddate>20191107</enddate><creator>Hong, Yue</creator><creator>Wang, Sanmei</creator><creator>Li, Qiang</creator><creator>Song, Xin</creator><creator>Wang, Zegao</creator><creator>Zhang, Xi</creator><creator>Besenbacher, Flemming</creator><creator>Dong, Mingdong</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2910-4773</orcidid><orcidid>https://orcid.org/0000-0002-0033-6538</orcidid><orcidid>https://orcid.org/0000-0002-2025-2171</orcidid><orcidid>https://orcid.org/0000-0003-0028-1335</orcidid><orcidid>https://orcid.org/0000-0003-1056-4152</orcidid></search><sort><creationdate>20191107</creationdate><title>Interfacial icelike water local doping of graphene</title><author>Hong, Yue ; Wang, Sanmei ; Li, Qiang ; Song, Xin ; Wang, Zegao ; Zhang, Xi ; Besenbacher, Flemming ; Dong, Mingdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-dc4669a7edc4244dc230edd73289cabbe991a7b3f18f325aa6ceae8d8fa8bd8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge transfer</topic><topic>Doping</topic><topic>Electron density</topic><topic>Electronic devices</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Mapping</topic><topic>Recording</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>Silicon substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Yue</creatorcontrib><creatorcontrib>Wang, Sanmei</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Song, Xin</creatorcontrib><creatorcontrib>Wang, Zegao</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Besenbacher, Flemming</creatorcontrib><creatorcontrib>Dong, Mingdong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Yue</au><au>Wang, Sanmei</au><au>Li, Qiang</au><au>Song, Xin</au><au>Wang, Zegao</au><au>Zhang, Xi</au><au>Besenbacher, Flemming</au><au>Dong, Mingdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial icelike water local doping of graphene</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-11-07</date><risdate>2019</risdate><volume>11</volume><issue>41</issue><spage>19334</spage><epage>1934</epage><pages>19334-1934</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Charge transfer at interfaces plays a critical role in the performance of graphene based electronic devices. However, separate control of the charge transfer process in the graphene/SiO
2
system is still challenging. Herein, we investigate the effects of the trapped interfacial icelike water layer on the charge transfer between graphene and the SiO
2
/Si substrate through recording the surface potential changes induced by partial removal of the interfacial icelike water layer upon
in situ
heating. The scanning Kelvin probe microscopy surface potential mapping shows that the graphene is electronically modified by the icelike water layer as the electron density transfers from graphene to the icelike water layer, resulting in hole-doping of graphene, which was also confirmed by the graphene field effect transistor electrical transport measurements. In addition, the density functional calculations provide in-depth insight into the electronic contributions of the icelike water layer to graphene and the charge transfer mechanism. This research will improve our ability to manipulate graphene's electronic properties for diverse applications, such as humidity sensing.
The interfacial icelike water layer contributed to hole doping in the graphene through charge transfer from graphene to the icelike water layer.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31423505</pmid><doi>10.1039/c9nr05832j</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2910-4773</orcidid><orcidid>https://orcid.org/0000-0002-0033-6538</orcidid><orcidid>https://orcid.org/0000-0002-2025-2171</orcidid><orcidid>https://orcid.org/0000-0003-0028-1335</orcidid><orcidid>https://orcid.org/0000-0003-1056-4152</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2019-11, Vol.11 (41), p.19334-1934 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_rsc_primary_c9nr05832j |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Charge transfer Doping Electron density Electronic devices Field effect transistors Graphene Mapping Recording Semiconductor devices Silicon dioxide Silicon substrates |
title | Interfacial icelike water local doping of graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20icelike%20water%20local%20doping%20of%20graphene&rft.jtitle=Nanoscale&rft.au=Hong,%20Yue&rft.date=2019-11-07&rft.volume=11&rft.issue=41&rft.spage=19334&rft.epage=1934&rft.pages=19334-1934&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr05832j&rft_dat=%3Cproquest_rsc_p%3E2308429091%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308429091&rft_id=info:pmid/31423505&rfr_iscdi=true |