Elucidating the structural properties of gold selenide nanostructures

Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material. Herein, we report on the synthesis and characterization of polymorphic mixed-valence AuSe (Au 1+ Au 3+ Se 2 ) by varying the sequence of the addition of the precursors in a colloidal synthesis. Despite the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2019-04, Vol.43 (15), p.5773-5782
Hauptverfasser: Machogo, Lerato F. E, Mthimunye, Musa, Sithole, Rudo K, Tetyana, Phumlani, Phao, Neo, Ngubeni, Grace N, Mlambo, Mbuso, Mduli, Phumlane S, Shumbula, Poslet M, Moloto, Nosipho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5782
container_issue 15
container_start_page 5773
container_title New journal of chemistry
container_volume 43
creator Machogo, Lerato F. E
Mthimunye, Musa
Sithole, Rudo K
Tetyana, Phumlani
Phao, Neo
Ngubeni, Grace N
Mlambo, Mbuso
Mduli, Phumlane S
Shumbula, Poslet M
Moloto, Nosipho
description Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material. Herein, we report on the synthesis and characterization of polymorphic mixed-valence AuSe (Au 1+ Au 3+ Se 2 ) by varying the sequence of the addition of the precursors in a colloidal synthesis. Despite the variations, all produced materials showed the co-existence of α- and β-AuSe. Although both polymorphs were observed, XRD showed that the addition of the gold precursor at higher temperatures resulted in α-AuSe being the dominant phase while the addition at lower temperatures resulted in β-AuSe being preferred. The crystal structures of both α- and β-AuSe consist of repeating units of a linearly bonded Au 1+ ion to two Se atoms and a Au 3+ ion bonded to four Se atoms in a square planar geometry. The Au4f core level spectrum of XPS showed only the Au +1 oxidation state, however, using the Se3d core level spectrum, the formation of AuSe (Au 1+ Au 3+ Se 2 ) was evident. Using DFT calculations, the Raman spectra of α- and β-AuSe were simulated and only the square planar geometry was found to be Raman active. The square planar geometry (Au 3+ Se 4 ) − ions belonging to the D 4h point group produced three Raman active vibrational modes, namely, a symmetric stretch (A 1g ), a planar bend (B 1g ) and an asymmetric stretch (B 2g ) for α-AuSe as well as A 1g and B 1g for β-AuSe. Experimentally, all samples showed Raman vibrational lines from both phases. Moreover, Raman spectroscopy confirmed the presence of Au 3+ in AuSe which was not detected using XPS. From the TEM and SEM results, it was evident that the morphologies of the predominantly α-AuSe samples were nanobelts while the predominantly β-AuSe samples showed plate-like structures. The predominantly α-AuSe samples showed a broad absorption band with a maximum at 853 nm while the predominantly β-AuSe samples showed evidence of absorption however with no defined excitonic peak. Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material.
doi_str_mv 10.1039/c9nj00142e
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9nj00142e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2204972609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-3326e561f1ad3a7448e751c42ef82699d75a83c490f75bb319950142f9035e733</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqVw4Y4UxA0p4LfrI6rCSxVc4Gy5zrqkCkmwnQP_vi7lceO0K82n3ZlB6JTgK4KZvna6W2NMOIU9NCFM6lJTSfbzTjgvseDyEB3FuGWIkmSCqqodXVPb1HSrIr1BEVMYXRqDbYsh9AOE1EAsel-s-rYuIrTQNTUUne36HxTiMTrwto1w8j2n6PW2epnfl4vnu4f5zaJ0DKtUMkYlCEk8sTWzivMZKEFcdutnVGpdK2FnzHGNvRLLJSNai20YrzEToBiboovd3WztY4SYzLofQ5dfGkox14pKrDN1uaNc6GMM4M0QmncbPg3BZluTmeunx6-aqgyf7eAQ3S_3V2PWz__TzVB7tgG6vm7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2204972609</pqid></control><display><type>article</type><title>Elucidating the structural properties of gold selenide nanostructures</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Machogo, Lerato F. E ; Mthimunye, Musa ; Sithole, Rudo K ; Tetyana, Phumlani ; Phao, Neo ; Ngubeni, Grace N ; Mlambo, Mbuso ; Mduli, Phumlane S ; Shumbula, Poslet M ; Moloto, Nosipho</creator><creatorcontrib>Machogo, Lerato F. E ; Mthimunye, Musa ; Sithole, Rudo K ; Tetyana, Phumlani ; Phao, Neo ; Ngubeni, Grace N ; Mlambo, Mbuso ; Mduli, Phumlane S ; Shumbula, Poslet M ; Moloto, Nosipho</creatorcontrib><description>Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material. Herein, we report on the synthesis and characterization of polymorphic mixed-valence AuSe (Au 1+ Au 3+ Se 2 ) by varying the sequence of the addition of the precursors in a colloidal synthesis. Despite the variations, all produced materials showed the co-existence of α- and β-AuSe. Although both polymorphs were observed, XRD showed that the addition of the gold precursor at higher temperatures resulted in α-AuSe being the dominant phase while the addition at lower temperatures resulted in β-AuSe being preferred. The crystal structures of both α- and β-AuSe consist of repeating units of a linearly bonded Au 1+ ion to two Se atoms and a Au 3+ ion bonded to four Se atoms in a square planar geometry. The Au4f core level spectrum of XPS showed only the Au +1 oxidation state, however, using the Se3d core level spectrum, the formation of AuSe (Au 1+ Au 3+ Se 2 ) was evident. Using DFT calculations, the Raman spectra of α- and β-AuSe were simulated and only the square planar geometry was found to be Raman active. The square planar geometry (Au 3+ Se 4 ) − ions belonging to the D 4h point group produced three Raman active vibrational modes, namely, a symmetric stretch (A 1g ), a planar bend (B 1g ) and an asymmetric stretch (B 2g ) for α-AuSe as well as A 1g and B 1g for β-AuSe. Experimentally, all samples showed Raman vibrational lines from both phases. Moreover, Raman spectroscopy confirmed the presence of Au 3+ in AuSe which was not detected using XPS. From the TEM and SEM results, it was evident that the morphologies of the predominantly α-AuSe samples were nanobelts while the predominantly β-AuSe samples showed plate-like structures. The predominantly α-AuSe samples showed a broad absorption band with a maximum at 853 nm while the predominantly β-AuSe samples showed evidence of absorption however with no defined excitonic peak. Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/c9nj00142e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectra ; Chemical bonds ; Crystal structure ; Geometry ; Gold ; Mathematical morphology ; Oxidation ; Plates (structural members) ; Precursors ; Raman spectra ; Raman spectroscopy ; Selenium ; Spectrum analysis ; Synthesis ; Transition metal compounds ; Valence ; X ray photoelectron spectroscopy</subject><ispartof>New journal of chemistry, 2019-04, Vol.43 (15), p.5773-5782</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-3326e561f1ad3a7448e751c42ef82699d75a83c490f75bb319950142f9035e733</citedby><cites>FETCH-LOGICAL-c307t-3326e561f1ad3a7448e751c42ef82699d75a83c490f75bb319950142f9035e733</cites><orcidid>0000-0003-4436-0932 ; 0000-0002-3976-6674 ; 0000-0002-1554-783X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Machogo, Lerato F. E</creatorcontrib><creatorcontrib>Mthimunye, Musa</creatorcontrib><creatorcontrib>Sithole, Rudo K</creatorcontrib><creatorcontrib>Tetyana, Phumlani</creatorcontrib><creatorcontrib>Phao, Neo</creatorcontrib><creatorcontrib>Ngubeni, Grace N</creatorcontrib><creatorcontrib>Mlambo, Mbuso</creatorcontrib><creatorcontrib>Mduli, Phumlane S</creatorcontrib><creatorcontrib>Shumbula, Poslet M</creatorcontrib><creatorcontrib>Moloto, Nosipho</creatorcontrib><title>Elucidating the structural properties of gold selenide nanostructures</title><title>New journal of chemistry</title><description>Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material. Herein, we report on the synthesis and characterization of polymorphic mixed-valence AuSe (Au 1+ Au 3+ Se 2 ) by varying the sequence of the addition of the precursors in a colloidal synthesis. Despite the variations, all produced materials showed the co-existence of α- and β-AuSe. Although both polymorphs were observed, XRD showed that the addition of the gold precursor at higher temperatures resulted in α-AuSe being the dominant phase while the addition at lower temperatures resulted in β-AuSe being preferred. The crystal structures of both α- and β-AuSe consist of repeating units of a linearly bonded Au 1+ ion to two Se atoms and a Au 3+ ion bonded to four Se atoms in a square planar geometry. The Au4f core level spectrum of XPS showed only the Au +1 oxidation state, however, using the Se3d core level spectrum, the formation of AuSe (Au 1+ Au 3+ Se 2 ) was evident. Using DFT calculations, the Raman spectra of α- and β-AuSe were simulated and only the square planar geometry was found to be Raman active. The square planar geometry (Au 3+ Se 4 ) − ions belonging to the D 4h point group produced three Raman active vibrational modes, namely, a symmetric stretch (A 1g ), a planar bend (B 1g ) and an asymmetric stretch (B 2g ) for α-AuSe as well as A 1g and B 1g for β-AuSe. Experimentally, all samples showed Raman vibrational lines from both phases. Moreover, Raman spectroscopy confirmed the presence of Au 3+ in AuSe which was not detected using XPS. From the TEM and SEM results, it was evident that the morphologies of the predominantly α-AuSe samples were nanobelts while the predominantly β-AuSe samples showed plate-like structures. The predominantly α-AuSe samples showed a broad absorption band with a maximum at 853 nm while the predominantly β-AuSe samples showed evidence of absorption however with no defined excitonic peak. Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material.</description><subject>Absorption spectra</subject><subject>Chemical bonds</subject><subject>Crystal structure</subject><subject>Geometry</subject><subject>Gold</subject><subject>Mathematical morphology</subject><subject>Oxidation</subject><subject>Plates (structural members)</subject><subject>Precursors</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Selenium</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><subject>Transition metal compounds</subject><subject>Valence</subject><subject>X ray photoelectron spectroscopy</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqVw4Y4UxA0p4LfrI6rCSxVc4Gy5zrqkCkmwnQP_vi7lceO0K82n3ZlB6JTgK4KZvna6W2NMOIU9NCFM6lJTSfbzTjgvseDyEB3FuGWIkmSCqqodXVPb1HSrIr1BEVMYXRqDbYsh9AOE1EAsel-s-rYuIrTQNTUUne36HxTiMTrwto1w8j2n6PW2epnfl4vnu4f5zaJ0DKtUMkYlCEk8sTWzivMZKEFcdutnVGpdK2FnzHGNvRLLJSNai20YrzEToBiboovd3WztY4SYzLofQ5dfGkox14pKrDN1uaNc6GMM4M0QmncbPg3BZluTmeunx6-aqgyf7eAQ3S_3V2PWz__TzVB7tgG6vm7s</recordid><startdate>20190408</startdate><enddate>20190408</enddate><creator>Machogo, Lerato F. E</creator><creator>Mthimunye, Musa</creator><creator>Sithole, Rudo K</creator><creator>Tetyana, Phumlani</creator><creator>Phao, Neo</creator><creator>Ngubeni, Grace N</creator><creator>Mlambo, Mbuso</creator><creator>Mduli, Phumlane S</creator><creator>Shumbula, Poslet M</creator><creator>Moloto, Nosipho</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope><orcidid>https://orcid.org/0000-0003-4436-0932</orcidid><orcidid>https://orcid.org/0000-0002-3976-6674</orcidid><orcidid>https://orcid.org/0000-0002-1554-783X</orcidid></search><sort><creationdate>20190408</creationdate><title>Elucidating the structural properties of gold selenide nanostructures</title><author>Machogo, Lerato F. E ; Mthimunye, Musa ; Sithole, Rudo K ; Tetyana, Phumlani ; Phao, Neo ; Ngubeni, Grace N ; Mlambo, Mbuso ; Mduli, Phumlane S ; Shumbula, Poslet M ; Moloto, Nosipho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-3326e561f1ad3a7448e751c42ef82699d75a83c490f75bb319950142f9035e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption spectra</topic><topic>Chemical bonds</topic><topic>Crystal structure</topic><topic>Geometry</topic><topic>Gold</topic><topic>Mathematical morphology</topic><topic>Oxidation</topic><topic>Plates (structural members)</topic><topic>Precursors</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Selenium</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><topic>Transition metal compounds</topic><topic>Valence</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machogo, Lerato F. E</creatorcontrib><creatorcontrib>Mthimunye, Musa</creatorcontrib><creatorcontrib>Sithole, Rudo K</creatorcontrib><creatorcontrib>Tetyana, Phumlani</creatorcontrib><creatorcontrib>Phao, Neo</creatorcontrib><creatorcontrib>Ngubeni, Grace N</creatorcontrib><creatorcontrib>Mlambo, Mbuso</creatorcontrib><creatorcontrib>Mduli, Phumlane S</creatorcontrib><creatorcontrib>Shumbula, Poslet M</creatorcontrib><creatorcontrib>Moloto, Nosipho</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machogo, Lerato F. E</au><au>Mthimunye, Musa</au><au>Sithole, Rudo K</au><au>Tetyana, Phumlani</au><au>Phao, Neo</au><au>Ngubeni, Grace N</au><au>Mlambo, Mbuso</au><au>Mduli, Phumlane S</au><au>Shumbula, Poslet M</au><au>Moloto, Nosipho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the structural properties of gold selenide nanostructures</atitle><jtitle>New journal of chemistry</jtitle><date>2019-04-08</date><risdate>2019</risdate><volume>43</volume><issue>15</issue><spage>5773</spage><epage>5782</epage><pages>5773-5782</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material. Herein, we report on the synthesis and characterization of polymorphic mixed-valence AuSe (Au 1+ Au 3+ Se 2 ) by varying the sequence of the addition of the precursors in a colloidal synthesis. Despite the variations, all produced materials showed the co-existence of α- and β-AuSe. Although both polymorphs were observed, XRD showed that the addition of the gold precursor at higher temperatures resulted in α-AuSe being the dominant phase while the addition at lower temperatures resulted in β-AuSe being preferred. The crystal structures of both α- and β-AuSe consist of repeating units of a linearly bonded Au 1+ ion to two Se atoms and a Au 3+ ion bonded to four Se atoms in a square planar geometry. The Au4f core level spectrum of XPS showed only the Au +1 oxidation state, however, using the Se3d core level spectrum, the formation of AuSe (Au 1+ Au 3+ Se 2 ) was evident. Using DFT calculations, the Raman spectra of α- and β-AuSe were simulated and only the square planar geometry was found to be Raman active. The square planar geometry (Au 3+ Se 4 ) − ions belonging to the D 4h point group produced three Raman active vibrational modes, namely, a symmetric stretch (A 1g ), a planar bend (B 1g ) and an asymmetric stretch (B 2g ) for α-AuSe as well as A 1g and B 1g for β-AuSe. Experimentally, all samples showed Raman vibrational lines from both phases. Moreover, Raman spectroscopy confirmed the presence of Au 3+ in AuSe which was not detected using XPS. From the TEM and SEM results, it was evident that the morphologies of the predominantly α-AuSe samples were nanobelts while the predominantly β-AuSe samples showed plate-like structures. The predominantly α-AuSe samples showed a broad absorption band with a maximum at 853 nm while the predominantly β-AuSe samples showed evidence of absorption however with no defined excitonic peak. Noble transition metal chalcogenide gold selenide is a relatively unexplored layered material.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9nj00142e</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4436-0932</orcidid><orcidid>https://orcid.org/0000-0002-3976-6674</orcidid><orcidid>https://orcid.org/0000-0002-1554-783X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1144-0546
ispartof New journal of chemistry, 2019-04, Vol.43 (15), p.5773-5782
issn 1144-0546
1369-9261
language eng
recordid cdi_rsc_primary_c9nj00142e
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Absorption spectra
Chemical bonds
Crystal structure
Geometry
Gold
Mathematical morphology
Oxidation
Plates (structural members)
Precursors
Raman spectra
Raman spectroscopy
Selenium
Spectrum analysis
Synthesis
Transition metal compounds
Valence
X ray photoelectron spectroscopy
title Elucidating the structural properties of gold selenide nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20structural%20properties%20of%20gold%20selenide%20nanostructures&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Machogo,%20Lerato%20F.%20E&rft.date=2019-04-08&rft.volume=43&rft.issue=15&rft.spage=5773&rft.epage=5782&rft.pages=5773-5782&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/c9nj00142e&rft_dat=%3Cproquest_rsc_p%3E2204972609%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2204972609&rft_id=info:pmid/&rfr_iscdi=true