Controllable 3D plasmonic nanostructures for high-quantum-efficiency UV photodetectors based on 2D and 0D materials

The confinement of incident light waves for light-matter interactions, especially for 2D materials with axially limited areas, commonly limits the development of high-performance photodetectors with a wide range of semiconductors in the nanoscale. Herein, we propose an approach to spatially extend t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials horizons 2020-03, Vol.7 (3), p.95-911
Hauptverfasser: Li, Ming-Yu, Yu, Muni, Jiang, Shenglin, Liu, Sisi, Liu, Hezhuang, Xu, Hao, Su, Dong, Zhang, Guangzu, Chen, Yuntian, Wu, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 911
container_issue 3
container_start_page 95
container_title Materials horizons
container_volume 7
creator Li, Ming-Yu
Yu, Muni
Jiang, Shenglin
Liu, Sisi
Liu, Hezhuang
Xu, Hao
Su, Dong
Zhang, Guangzu
Chen, Yuntian
Wu, Jiang
description The confinement of incident light waves for light-matter interactions, especially for 2D materials with axially limited areas, commonly limits the development of high-performance photodetectors with a wide range of semiconductors in the nanoscale. Herein, we propose an approach to spatially extend the light confinement effect from 2D to 3D with Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures. The incident light beams were initially concentrated by the Au nanostructures (NSs) and the strong plasmon optical interference within AAO matrixes subsequently offered an effective way to trap the light transmitted from the Au NS layers, which was recursively collected by Au NSs. The optical properties of the 3D plasmonic NSs correspondingly exhibited strong morphological dependence, which was evidenced by the tunable intensified Raman vibrational signals of the R6G molecules with a prominent enhancement factor up to 1 × 10 8 . As a consequence, the 3D plasmonic nanostructures can be successfully applied in various dimensional materials and overcome the limited solar energy utilization for the ultra-thin 2D p -MSB nanoribbons, resulting in a high quantum efficiency up to 1068% under 0.5 mW cm −2 UV light illumination. 3D Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures with strong plasmonic coupling for spatial light utilization are reported.
doi_str_mv 10.1039/c9mh01660k
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9mh01660k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374061921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-9d82ad80f3c0de8952e577646cb61e8f71e08dd13efd57c39608e2b224f516173</originalsourceid><addsrcrecordid>eNp9kMFLwzAUxosoKHMX70LEm1B9Sdq0PcqmTlS8OK8lS15cZ5t0SXrwv7c60Zun78H343vwS5ITCpcUeHWlqm4NVAh430uOGOQ0FTzP93_vrDhMpiFsAIDyLIcSjpIwczZ617Zy1SLhc9K3MnTONopYaV2IflBx8BiIcZ6sm7d1uh2kjUOXojGNatCqD7J8Jf3aRacxoorOB7KSATVxlrA5kVYTmJNORvSNbMNxcmDGwOlPTpLl7c3LbJE-Pt_dz64fU8WzLKaVLpnUJRiuQGNZ5QzzohCZUCtBsTQFRSi1phyNzgvFKwElshVjmcmpoAWfJOe73d677YAh1hs3eDu-rBkvMhC0YnSkLnaU8i4Ej6bufdNJ_1FTqL-81rPqafHt9WGET3ewD-qX-_M-9mf_9XWvDf8EYsGARg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374061921</pqid></control><display><type>article</type><title>Controllable 3D plasmonic nanostructures for high-quantum-efficiency UV photodetectors based on 2D and 0D materials</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Li, Ming-Yu ; Yu, Muni ; Jiang, Shenglin ; Liu, Sisi ; Liu, Hezhuang ; Xu, Hao ; Su, Dong ; Zhang, Guangzu ; Chen, Yuntian ; Wu, Jiang</creator><creatorcontrib>Li, Ming-Yu ; Yu, Muni ; Jiang, Shenglin ; Liu, Sisi ; Liu, Hezhuang ; Xu, Hao ; Su, Dong ; Zhang, Guangzu ; Chen, Yuntian ; Wu, Jiang</creatorcontrib><description>The confinement of incident light waves for light-matter interactions, especially for 2D materials with axially limited areas, commonly limits the development of high-performance photodetectors with a wide range of semiconductors in the nanoscale. Herein, we propose an approach to spatially extend the light confinement effect from 2D to 3D with Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures. The incident light beams were initially concentrated by the Au nanostructures (NSs) and the strong plasmon optical interference within AAO matrixes subsequently offered an effective way to trap the light transmitted from the Au NS layers, which was recursively collected by Au NSs. The optical properties of the 3D plasmonic NSs correspondingly exhibited strong morphological dependence, which was evidenced by the tunable intensified Raman vibrational signals of the R6G molecules with a prominent enhancement factor up to 1 × 10 8 . As a consequence, the 3D plasmonic nanostructures can be successfully applied in various dimensional materials and overcome the limited solar energy utilization for the ultra-thin 2D p -MSB nanoribbons, resulting in a high quantum efficiency up to 1068% under 0.5 mW cm −2 UV light illumination. 3D Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures with strong plasmonic coupling for spatial light utilization are reported.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/c9mh01660k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum oxide ; Confinement ; Energy utilization ; Incident light ; Light ; Light beams ; Nanostructure ; Optical properties ; Photometers ; Quantum efficiency ; Solar energy ; Two dimensional materials ; Ultraviolet radiation</subject><ispartof>Materials horizons, 2020-03, Vol.7 (3), p.95-911</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-9d82ad80f3c0de8952e577646cb61e8f71e08dd13efd57c39608e2b224f516173</citedby><cites>FETCH-LOGICAL-c344t-9d82ad80f3c0de8952e577646cb61e8f71e08dd13efd57c39608e2b224f516173</cites><orcidid>0000-0002-6500-7364 ; 0000-0003-4812-8604 ; 0000-0003-4323-2429 ; 0000-0003-0679-6196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Ming-Yu</creatorcontrib><creatorcontrib>Yu, Muni</creatorcontrib><creatorcontrib>Jiang, Shenglin</creatorcontrib><creatorcontrib>Liu, Sisi</creatorcontrib><creatorcontrib>Liu, Hezhuang</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Su, Dong</creatorcontrib><creatorcontrib>Zhang, Guangzu</creatorcontrib><creatorcontrib>Chen, Yuntian</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><title>Controllable 3D plasmonic nanostructures for high-quantum-efficiency UV photodetectors based on 2D and 0D materials</title><title>Materials horizons</title><description>The confinement of incident light waves for light-matter interactions, especially for 2D materials with axially limited areas, commonly limits the development of high-performance photodetectors with a wide range of semiconductors in the nanoscale. Herein, we propose an approach to spatially extend the light confinement effect from 2D to 3D with Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures. The incident light beams were initially concentrated by the Au nanostructures (NSs) and the strong plasmon optical interference within AAO matrixes subsequently offered an effective way to trap the light transmitted from the Au NS layers, which was recursively collected by Au NSs. The optical properties of the 3D plasmonic NSs correspondingly exhibited strong morphological dependence, which was evidenced by the tunable intensified Raman vibrational signals of the R6G molecules with a prominent enhancement factor up to 1 × 10 8 . As a consequence, the 3D plasmonic nanostructures can be successfully applied in various dimensional materials and overcome the limited solar energy utilization for the ultra-thin 2D p -MSB nanoribbons, resulting in a high quantum efficiency up to 1068% under 0.5 mW cm −2 UV light illumination. 3D Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures with strong plasmonic coupling for spatial light utilization are reported.</description><subject>Aluminum oxide</subject><subject>Confinement</subject><subject>Energy utilization</subject><subject>Incident light</subject><subject>Light</subject><subject>Light beams</subject><subject>Nanostructure</subject><subject>Optical properties</subject><subject>Photometers</subject><subject>Quantum efficiency</subject><subject>Solar energy</subject><subject>Two dimensional materials</subject><subject>Ultraviolet radiation</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAUxosoKHMX70LEm1B9Sdq0PcqmTlS8OK8lS15cZ5t0SXrwv7c60Zun78H343vwS5ITCpcUeHWlqm4NVAh430uOGOQ0FTzP93_vrDhMpiFsAIDyLIcSjpIwczZ617Zy1SLhc9K3MnTONopYaV2IflBx8BiIcZ6sm7d1uh2kjUOXojGNatCqD7J8Jf3aRacxoorOB7KSATVxlrA5kVYTmJNORvSNbMNxcmDGwOlPTpLl7c3LbJE-Pt_dz64fU8WzLKaVLpnUJRiuQGNZ5QzzohCZUCtBsTQFRSi1phyNzgvFKwElshVjmcmpoAWfJOe73d677YAh1hs3eDu-rBkvMhC0YnSkLnaU8i4Ej6bufdNJ_1FTqL-81rPqafHt9WGET3ewD-qX-_M-9mf_9XWvDf8EYsGARg</recordid><startdate>20200309</startdate><enddate>20200309</enddate><creator>Li, Ming-Yu</creator><creator>Yu, Muni</creator><creator>Jiang, Shenglin</creator><creator>Liu, Sisi</creator><creator>Liu, Hezhuang</creator><creator>Xu, Hao</creator><creator>Su, Dong</creator><creator>Zhang, Guangzu</creator><creator>Chen, Yuntian</creator><creator>Wu, Jiang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6500-7364</orcidid><orcidid>https://orcid.org/0000-0003-4812-8604</orcidid><orcidid>https://orcid.org/0000-0003-4323-2429</orcidid><orcidid>https://orcid.org/0000-0003-0679-6196</orcidid></search><sort><creationdate>20200309</creationdate><title>Controllable 3D plasmonic nanostructures for high-quantum-efficiency UV photodetectors based on 2D and 0D materials</title><author>Li, Ming-Yu ; Yu, Muni ; Jiang, Shenglin ; Liu, Sisi ; Liu, Hezhuang ; Xu, Hao ; Su, Dong ; Zhang, Guangzu ; Chen, Yuntian ; Wu, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-9d82ad80f3c0de8952e577646cb61e8f71e08dd13efd57c39608e2b224f516173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Confinement</topic><topic>Energy utilization</topic><topic>Incident light</topic><topic>Light</topic><topic>Light beams</topic><topic>Nanostructure</topic><topic>Optical properties</topic><topic>Photometers</topic><topic>Quantum efficiency</topic><topic>Solar energy</topic><topic>Two dimensional materials</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ming-Yu</creatorcontrib><creatorcontrib>Yu, Muni</creatorcontrib><creatorcontrib>Jiang, Shenglin</creatorcontrib><creatorcontrib>Liu, Sisi</creatorcontrib><creatorcontrib>Liu, Hezhuang</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Su, Dong</creatorcontrib><creatorcontrib>Zhang, Guangzu</creatorcontrib><creatorcontrib>Chen, Yuntian</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ming-Yu</au><au>Yu, Muni</au><au>Jiang, Shenglin</au><au>Liu, Sisi</au><au>Liu, Hezhuang</au><au>Xu, Hao</au><au>Su, Dong</au><au>Zhang, Guangzu</au><au>Chen, Yuntian</au><au>Wu, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable 3D plasmonic nanostructures for high-quantum-efficiency UV photodetectors based on 2D and 0D materials</atitle><jtitle>Materials horizons</jtitle><date>2020-03-09</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>95</spage><epage>911</epage><pages>95-911</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>The confinement of incident light waves for light-matter interactions, especially for 2D materials with axially limited areas, commonly limits the development of high-performance photodetectors with a wide range of semiconductors in the nanoscale. Herein, we propose an approach to spatially extend the light confinement effect from 2D to 3D with Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures. The incident light beams were initially concentrated by the Au nanostructures (NSs) and the strong plasmon optical interference within AAO matrixes subsequently offered an effective way to trap the light transmitted from the Au NS layers, which was recursively collected by Au NSs. The optical properties of the 3D plasmonic NSs correspondingly exhibited strong morphological dependence, which was evidenced by the tunable intensified Raman vibrational signals of the R6G molecules with a prominent enhancement factor up to 1 × 10 8 . As a consequence, the 3D plasmonic nanostructures can be successfully applied in various dimensional materials and overcome the limited solar energy utilization for the ultra-thin 2D p -MSB nanoribbons, resulting in a high quantum efficiency up to 1068% under 0.5 mW cm −2 UV light illumination. 3D Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures with strong plasmonic coupling for spatial light utilization are reported.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9mh01660k</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6500-7364</orcidid><orcidid>https://orcid.org/0000-0003-4812-8604</orcidid><orcidid>https://orcid.org/0000-0003-4323-2429</orcidid><orcidid>https://orcid.org/0000-0003-0679-6196</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2051-6347
ispartof Materials horizons, 2020-03, Vol.7 (3), p.95-911
issn 2051-6347
2051-6355
language eng
recordid cdi_rsc_primary_c9mh01660k
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Aluminum oxide
Confinement
Energy utilization
Incident light
Light
Light beams
Nanostructure
Optical properties
Photometers
Quantum efficiency
Solar energy
Two dimensional materials
Ultraviolet radiation
title Controllable 3D plasmonic nanostructures for high-quantum-efficiency UV photodetectors based on 2D and 0D materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%203D%20plasmonic%20nanostructures%20for%20high-quantum-efficiency%20UV%20photodetectors%20based%20on%202D%20and%200D%20materials&rft.jtitle=Materials%20horizons&rft.au=Li,%20Ming-Yu&rft.date=2020-03-09&rft.volume=7&rft.issue=3&rft.spage=95&rft.epage=911&rft.pages=95-911&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/c9mh01660k&rft_dat=%3Cproquest_rsc_p%3E2374061921%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374061921&rft_id=info:pmid/&rfr_iscdi=true