Controllable 3D plasmonic nanostructures for high-quantum-efficiency UV photodetectors based on 2D and 0D materials
The confinement of incident light waves for light-matter interactions, especially for 2D materials with axially limited areas, commonly limits the development of high-performance photodetectors with a wide range of semiconductors in the nanoscale. Herein, we propose an approach to spatially extend t...
Gespeichert in:
Veröffentlicht in: | Materials horizons 2020-03, Vol.7 (3), p.95-911 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 911 |
---|---|
container_issue | 3 |
container_start_page | 95 |
container_title | Materials horizons |
container_volume | 7 |
creator | Li, Ming-Yu Yu, Muni Jiang, Shenglin Liu, Sisi Liu, Hezhuang Xu, Hao Su, Dong Zhang, Guangzu Chen, Yuntian Wu, Jiang |
description | The confinement of incident light waves for light-matter interactions, especially for 2D materials with axially limited areas, commonly limits the development of high-performance photodetectors with a wide range of semiconductors in the nanoscale. Herein, we propose an approach to spatially extend the light confinement effect from 2D to 3D with Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures. The incident light beams were initially concentrated by the Au nanostructures (NSs) and the strong plasmon optical interference within AAO matrixes subsequently offered an effective way to trap the light transmitted from the Au NS layers, which was recursively collected by Au NSs. The optical properties of the 3D plasmonic NSs correspondingly exhibited strong morphological dependence, which was evidenced by the tunable intensified Raman vibrational signals of the R6G molecules with a prominent enhancement factor up to 1 × 10
8
. As a consequence, the 3D plasmonic nanostructures can be successfully applied in various dimensional materials and overcome the limited solar energy utilization for the ultra-thin 2D
p
-MSB nanoribbons, resulting in a high quantum efficiency up to 1068% under 0.5 mW cm
−2
UV light illumination.
3D Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures with strong plasmonic coupling for spatial light utilization are reported. |
doi_str_mv | 10.1039/c9mh01660k |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9mh01660k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374061921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-9d82ad80f3c0de8952e577646cb61e8f71e08dd13efd57c39608e2b224f516173</originalsourceid><addsrcrecordid>eNp9kMFLwzAUxosoKHMX70LEm1B9Sdq0PcqmTlS8OK8lS15cZ5t0SXrwv7c60Zun78H343vwS5ITCpcUeHWlqm4NVAh430uOGOQ0FTzP93_vrDhMpiFsAIDyLIcSjpIwczZ617Zy1SLhc9K3MnTONopYaV2IflBx8BiIcZ6sm7d1uh2kjUOXojGNatCqD7J8Jf3aRacxoorOB7KSATVxlrA5kVYTmJNORvSNbMNxcmDGwOlPTpLl7c3LbJE-Pt_dz64fU8WzLKaVLpnUJRiuQGNZ5QzzohCZUCtBsTQFRSi1phyNzgvFKwElshVjmcmpoAWfJOe73d677YAh1hs3eDu-rBkvMhC0YnSkLnaU8i4Ej6bufdNJ_1FTqL-81rPqafHt9WGET3ewD-qX-_M-9mf_9XWvDf8EYsGARg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374061921</pqid></control><display><type>article</type><title>Controllable 3D plasmonic nanostructures for high-quantum-efficiency UV photodetectors based on 2D and 0D materials</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Li, Ming-Yu ; Yu, Muni ; Jiang, Shenglin ; Liu, Sisi ; Liu, Hezhuang ; Xu, Hao ; Su, Dong ; Zhang, Guangzu ; Chen, Yuntian ; Wu, Jiang</creator><creatorcontrib>Li, Ming-Yu ; Yu, Muni ; Jiang, Shenglin ; Liu, Sisi ; Liu, Hezhuang ; Xu, Hao ; Su, Dong ; Zhang, Guangzu ; Chen, Yuntian ; Wu, Jiang</creatorcontrib><description>The confinement of incident light waves for light-matter interactions, especially for 2D materials with axially limited areas, commonly limits the development of high-performance photodetectors with a wide range of semiconductors in the nanoscale. Herein, we propose an approach to spatially extend the light confinement effect from 2D to 3D with Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures. The incident light beams were initially concentrated by the Au nanostructures (NSs) and the strong plasmon optical interference within AAO matrixes subsequently offered an effective way to trap the light transmitted from the Au NS layers, which was recursively collected by Au NSs. The optical properties of the 3D plasmonic NSs correspondingly exhibited strong morphological dependence, which was evidenced by the tunable intensified Raman vibrational signals of the R6G molecules with a prominent enhancement factor up to 1 × 10
8
. As a consequence, the 3D plasmonic nanostructures can be successfully applied in various dimensional materials and overcome the limited solar energy utilization for the ultra-thin 2D
p
-MSB nanoribbons, resulting in a high quantum efficiency up to 1068% under 0.5 mW cm
−2
UV light illumination.
3D Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures with strong plasmonic coupling for spatial light utilization are reported.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/c9mh01660k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aluminum oxide ; Confinement ; Energy utilization ; Incident light ; Light ; Light beams ; Nanostructure ; Optical properties ; Photometers ; Quantum efficiency ; Solar energy ; Two dimensional materials ; Ultraviolet radiation</subject><ispartof>Materials horizons, 2020-03, Vol.7 (3), p.95-911</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-9d82ad80f3c0de8952e577646cb61e8f71e08dd13efd57c39608e2b224f516173</citedby><cites>FETCH-LOGICAL-c344t-9d82ad80f3c0de8952e577646cb61e8f71e08dd13efd57c39608e2b224f516173</cites><orcidid>0000-0002-6500-7364 ; 0000-0003-4812-8604 ; 0000-0003-4323-2429 ; 0000-0003-0679-6196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Ming-Yu</creatorcontrib><creatorcontrib>Yu, Muni</creatorcontrib><creatorcontrib>Jiang, Shenglin</creatorcontrib><creatorcontrib>Liu, Sisi</creatorcontrib><creatorcontrib>Liu, Hezhuang</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Su, Dong</creatorcontrib><creatorcontrib>Zhang, Guangzu</creatorcontrib><creatorcontrib>Chen, Yuntian</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><title>Controllable 3D plasmonic nanostructures for high-quantum-efficiency UV photodetectors based on 2D and 0D materials</title><title>Materials horizons</title><description>The confinement of incident light waves for light-matter interactions, especially for 2D materials with axially limited areas, commonly limits the development of high-performance photodetectors with a wide range of semiconductors in the nanoscale. Herein, we propose an approach to spatially extend the light confinement effect from 2D to 3D with Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures. The incident light beams were initially concentrated by the Au nanostructures (NSs) and the strong plasmon optical interference within AAO matrixes subsequently offered an effective way to trap the light transmitted from the Au NS layers, which was recursively collected by Au NSs. The optical properties of the 3D plasmonic NSs correspondingly exhibited strong morphological dependence, which was evidenced by the tunable intensified Raman vibrational signals of the R6G molecules with a prominent enhancement factor up to 1 × 10
8
. As a consequence, the 3D plasmonic nanostructures can be successfully applied in various dimensional materials and overcome the limited solar energy utilization for the ultra-thin 2D
p
-MSB nanoribbons, resulting in a high quantum efficiency up to 1068% under 0.5 mW cm
−2
UV light illumination.
3D Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures with strong plasmonic coupling for spatial light utilization are reported.</description><subject>Aluminum oxide</subject><subject>Confinement</subject><subject>Energy utilization</subject><subject>Incident light</subject><subject>Light</subject><subject>Light beams</subject><subject>Nanostructure</subject><subject>Optical properties</subject><subject>Photometers</subject><subject>Quantum efficiency</subject><subject>Solar energy</subject><subject>Two dimensional materials</subject><subject>Ultraviolet radiation</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFLwzAUxosoKHMX70LEm1B9Sdq0PcqmTlS8OK8lS15cZ5t0SXrwv7c60Zun78H343vwS5ITCpcUeHWlqm4NVAh430uOGOQ0FTzP93_vrDhMpiFsAIDyLIcSjpIwczZ617Zy1SLhc9K3MnTONopYaV2IflBx8BiIcZ6sm7d1uh2kjUOXojGNatCqD7J8Jf3aRacxoorOB7KSATVxlrA5kVYTmJNORvSNbMNxcmDGwOlPTpLl7c3LbJE-Pt_dz64fU8WzLKaVLpnUJRiuQGNZ5QzzohCZUCtBsTQFRSi1phyNzgvFKwElshVjmcmpoAWfJOe73d677YAh1hs3eDu-rBkvMhC0YnSkLnaU8i4Ej6bufdNJ_1FTqL-81rPqafHt9WGET3ewD-qX-_M-9mf_9XWvDf8EYsGARg</recordid><startdate>20200309</startdate><enddate>20200309</enddate><creator>Li, Ming-Yu</creator><creator>Yu, Muni</creator><creator>Jiang, Shenglin</creator><creator>Liu, Sisi</creator><creator>Liu, Hezhuang</creator><creator>Xu, Hao</creator><creator>Su, Dong</creator><creator>Zhang, Guangzu</creator><creator>Chen, Yuntian</creator><creator>Wu, Jiang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6500-7364</orcidid><orcidid>https://orcid.org/0000-0003-4812-8604</orcidid><orcidid>https://orcid.org/0000-0003-4323-2429</orcidid><orcidid>https://orcid.org/0000-0003-0679-6196</orcidid></search><sort><creationdate>20200309</creationdate><title>Controllable 3D plasmonic nanostructures for high-quantum-efficiency UV photodetectors based on 2D and 0D materials</title><author>Li, Ming-Yu ; Yu, Muni ; Jiang, Shenglin ; Liu, Sisi ; Liu, Hezhuang ; Xu, Hao ; Su, Dong ; Zhang, Guangzu ; Chen, Yuntian ; Wu, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-9d82ad80f3c0de8952e577646cb61e8f71e08dd13efd57c39608e2b224f516173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Confinement</topic><topic>Energy utilization</topic><topic>Incident light</topic><topic>Light</topic><topic>Light beams</topic><topic>Nanostructure</topic><topic>Optical properties</topic><topic>Photometers</topic><topic>Quantum efficiency</topic><topic>Solar energy</topic><topic>Two dimensional materials</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ming-Yu</creatorcontrib><creatorcontrib>Yu, Muni</creatorcontrib><creatorcontrib>Jiang, Shenglin</creatorcontrib><creatorcontrib>Liu, Sisi</creatorcontrib><creatorcontrib>Liu, Hezhuang</creatorcontrib><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Su, Dong</creatorcontrib><creatorcontrib>Zhang, Guangzu</creatorcontrib><creatorcontrib>Chen, Yuntian</creatorcontrib><creatorcontrib>Wu, Jiang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ming-Yu</au><au>Yu, Muni</au><au>Jiang, Shenglin</au><au>Liu, Sisi</au><au>Liu, Hezhuang</au><au>Xu, Hao</au><au>Su, Dong</au><au>Zhang, Guangzu</au><au>Chen, Yuntian</au><au>Wu, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable 3D plasmonic nanostructures for high-quantum-efficiency UV photodetectors based on 2D and 0D materials</atitle><jtitle>Materials horizons</jtitle><date>2020-03-09</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>95</spage><epage>911</epage><pages>95-911</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>The confinement of incident light waves for light-matter interactions, especially for 2D materials with axially limited areas, commonly limits the development of high-performance photodetectors with a wide range of semiconductors in the nanoscale. Herein, we propose an approach to spatially extend the light confinement effect from 2D to 3D with Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures. The incident light beams were initially concentrated by the Au nanostructures (NSs) and the strong plasmon optical interference within AAO matrixes subsequently offered an effective way to trap the light transmitted from the Au NS layers, which was recursively collected by Au NSs. The optical properties of the 3D plasmonic NSs correspondingly exhibited strong morphological dependence, which was evidenced by the tunable intensified Raman vibrational signals of the R6G molecules with a prominent enhancement factor up to 1 × 10
8
. As a consequence, the 3D plasmonic nanostructures can be successfully applied in various dimensional materials and overcome the limited solar energy utilization for the ultra-thin 2D
p
-MSB nanoribbons, resulting in a high quantum efficiency up to 1068% under 0.5 mW cm
−2
UV light illumination.
3D Au nanostructure/anodic aluminum oxide (AAO) matrix plasmonic architectures with strong plasmonic coupling for spatial light utilization are reported.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9mh01660k</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6500-7364</orcidid><orcidid>https://orcid.org/0000-0003-4812-8604</orcidid><orcidid>https://orcid.org/0000-0003-4323-2429</orcidid><orcidid>https://orcid.org/0000-0003-0679-6196</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-6347 |
ispartof | Materials horizons, 2020-03, Vol.7 (3), p.95-911 |
issn | 2051-6347 2051-6355 |
language | eng |
recordid | cdi_rsc_primary_c9mh01660k |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Aluminum oxide Confinement Energy utilization Incident light Light Light beams Nanostructure Optical properties Photometers Quantum efficiency Solar energy Two dimensional materials Ultraviolet radiation |
title | Controllable 3D plasmonic nanostructures for high-quantum-efficiency UV photodetectors based on 2D and 0D materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%203D%20plasmonic%20nanostructures%20for%20high-quantum-efficiency%20UV%20photodetectors%20based%20on%202D%20and%200D%20materials&rft.jtitle=Materials%20horizons&rft.au=Li,%20Ming-Yu&rft.date=2020-03-09&rft.volume=7&rft.issue=3&rft.spage=95&rft.epage=911&rft.pages=95-911&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/c9mh01660k&rft_dat=%3Cproquest_rsc_p%3E2374061921%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374061921&rft_id=info:pmid/&rfr_iscdi=true |