Computational screening, synthesis and testing of metal-organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates
Computational crystal construction algorithms were used to create twelve metal-organic frameworks containing a newly synthesized [2,2′-bithiazole]-5,5′-dicarboxylic acid (H 2 TzTz) spacer and assorted transition metal nodes. Among the twelve structures, the zirconium-based MOF of general formula [Zr...
Gespeichert in:
Veröffentlicht in: | Molecular systems design & engineering 2019-10, Vol.4 (5), p.1-113 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Molecular systems design & engineering |
container_volume | 4 |
creator | Müller, Philipp Bucior, Benjamin Tuci, Giulia Luconi, Lapo Getzschmann, Jürgen Kaskel, Stefan Snurr, Randall Q Giambastiani, Giuliano Rossin, Andrea |
description | Computational crystal construction algorithms were used to create twelve metal-organic frameworks containing a newly synthesized [2,2′-bithiazole]-5,5′-dicarboxylic acid (H
2
TzTz) spacer and assorted transition metal nodes. Among the twelve structures, the zirconium-based MOF of general formula [Zr
6
O
4
(OH)
4
(TzTz)
6
] (
1
) was found to be the best candidate for carbon dioxide uptake, as judged from the results of the grand canonical Monte Carlo (GCMC) simulations of CO
2
adsorption isotherms. Guided by the simulation results,
1
was synthesized in the laboratory and thoroughly characterized.
1
is isoreticular to its bithiophene and bis(benzene) (UiO-67) analogues; it crystallizes in the cubic
Pn
3&cmb.macr; space group with
fcu
topology, and it features octahedral [Zr
6
] nodes connected by twelve carboxylate groups from six bridging TzTz
2−
spacers. It is a predominantly microporous material (micropore volume = 84% of the total pore volume), with a BET area of 840 m
2
g
−1
and a maximum CO
2
uptake at ambient pressure of 2.3 mmol g
−1
(10.0 wt%) or 1.7 mmol g
−1
(7.5 wt%) at 273 or 298 K, respectively. The CO
2
affinity (isosteric heat of adsorption
Q
st
= 18.7 kJ mol
−1
; CO
2
/N
2
Henry selectivity = 10; CO
2
/N
2
IAST selectivity = 8.4) is similar to that of its bithiophene analogue. After partial removal of solvent (activation),
1
was tested as a heterogeneous catalyst in the reaction of CO
2
with epoxides bearing a -CH
2
X pendant arm (X = Cl: epichlorohydrin; X = Br: epibromohydrin) to give the corresponding cyclic carbonates at
T
= 393 K and
p
CO
2
= 1 bar under green (solvent- and co-catalyst-free) conditions. A good conversion of 74% and a turnover frequency of 12.3 mmol (cyclic carbonate) per mmol
Zr
per h have been recorded with epibromohydrin as a substrate.
A combined theoretical-experimental approach has been exploited for the design of a zirconium bithiazole-based MOF for CO
2
adsorption and its reaction with epoxides under green conditions. |
doi_str_mv | 10.1039/c9me00062c |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9me00062c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2301740011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-847b9c93dea68e19c8fea75851c5a54213f318d4f0a1b965c2070e44cc1a00b23</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEElXbC3ekAW6IUNv52PiIokKRiriUs-VMxrtuEzvYXsr2R_EbcRsEPXEae-bxzOt5i-IFZ-85q-QZypkYY63AJ8WRYE1XyraTTx-dnxenMV5nhrddK5r2qPjV-3nZJ52sd3qCiIHIWbd9B_Hg0o6ijaDdCIliymnwBmZKeip92GpnEUzQM936cBPh1qYdaBhysPrOTwSTdTcUwPgAqMPgHYzW_7Qj5euS9oEeetsUYXs_F9C7HxRi1gLWJQ94wCnPWN_qrOGkeGb0FOn0Tzwuvn08v-ovysuvnz73Hy5LrDlPZVdvBomyGkm3HXGJnSG9abqGY6ObWvDKVLwba8M0H2TboGAbRnWNyDVjg6iOi9drX5-_rSLaRLjL6hxhUrypRC1kht6s0BL8931ekLr2-5DXGJWoGN_Uec88U29XCoOPMZBRS7CzDgfFmbr3TfXyy_mDb32GX65wiPiX--drrr_6X10to6l-A8fUo3s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301740011</pqid></control><display><type>article</type><title>Computational screening, synthesis and testing of metal-organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Müller, Philipp ; Bucior, Benjamin ; Tuci, Giulia ; Luconi, Lapo ; Getzschmann, Jürgen ; Kaskel, Stefan ; Snurr, Randall Q ; Giambastiani, Giuliano ; Rossin, Andrea</creator><creatorcontrib>Müller, Philipp ; Bucior, Benjamin ; Tuci, Giulia ; Luconi, Lapo ; Getzschmann, Jürgen ; Kaskel, Stefan ; Snurr, Randall Q ; Giambastiani, Giuliano ; Rossin, Andrea</creatorcontrib><description>Computational crystal construction algorithms were used to create twelve metal-organic frameworks containing a newly synthesized [2,2′-bithiazole]-5,5′-dicarboxylic acid (H
2
TzTz) spacer and assorted transition metal nodes. Among the twelve structures, the zirconium-based MOF of general formula [Zr
6
O
4
(OH)
4
(TzTz)
6
] (
1
) was found to be the best candidate for carbon dioxide uptake, as judged from the results of the grand canonical Monte Carlo (GCMC) simulations of CO
2
adsorption isotherms. Guided by the simulation results,
1
was synthesized in the laboratory and thoroughly characterized.
1
is isoreticular to its bithiophene and bis(benzene) (UiO-67) analogues; it crystallizes in the cubic
Pn
3&cmb.macr; space group with
fcu
topology, and it features octahedral [Zr
6
] nodes connected by twelve carboxylate groups from six bridging TzTz
2−
spacers. It is a predominantly microporous material (micropore volume = 84% of the total pore volume), with a BET area of 840 m
2
g
−1
and a maximum CO
2
uptake at ambient pressure of 2.3 mmol g
−1
(10.0 wt%) or 1.7 mmol g
−1
(7.5 wt%) at 273 or 298 K, respectively. The CO
2
affinity (isosteric heat of adsorption
Q
st
= 18.7 kJ mol
−1
; CO
2
/N
2
Henry selectivity = 10; CO
2
/N
2
IAST selectivity = 8.4) is similar to that of its bithiophene analogue. After partial removal of solvent (activation),
1
was tested as a heterogeneous catalyst in the reaction of CO
2
with epoxides bearing a -CH
2
X pendant arm (X = Cl: epichlorohydrin; X = Br: epibromohydrin) to give the corresponding cyclic carbonates at
T
= 393 K and
p
CO
2
= 1 bar under green (solvent- and co-catalyst-free) conditions. A good conversion of 74% and a turnover frequency of 12.3 mmol (cyclic carbonate) per mmol
Zr
per h have been recorded with epibromohydrin as a substrate.
A combined theoretical-experimental approach has been exploited for the design of a zirconium bithiazole-based MOF for CO
2
adsorption and its reaction with epoxides under green conditions.</description><identifier>ISSN: 2058-9689</identifier><identifier>EISSN: 2058-9689</identifier><identifier>DOI: 10.1039/c9me00062c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Algorithms ; Benzene ; Carbon dioxide ; Carbon sequestration ; Carbonates ; Catalysts ; Computer simulation ; Conversion ; Crystal structure ; Crystallography ; Data acquisition ; Dicarboxylic acids ; Epichlorohydrin ; Heat of adsorption ; Metal-organic frameworks ; Nodes ; Pressure ; Selectivity ; Solvents ; Substrates ; Synthesis ; Tobacco ; Topology ; Transition metals ; Zirconium</subject><ispartof>Molecular systems design & engineering, 2019-10, Vol.4 (5), p.1-113</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-847b9c93dea68e19c8fea75851c5a54213f318d4f0a1b965c2070e44cc1a00b23</citedby><cites>FETCH-LOGICAL-c411t-847b9c93dea68e19c8fea75851c5a54213f318d4f0a1b965c2070e44cc1a00b23</cites><orcidid>0000-0002-1283-2803 ; 0000-0002-3411-989X ; 0000-0003-2925-9246 ; 0000-0002-0315-3286 ; 0000-0002-8545-3898 ; 0000-0003-4572-0303 ; 000000023411989X ; 0000000329259246 ; 0000000285453898 ; 0000000212832803 ; 0000000345720303 ; 0000000203153286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1532429$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller, Philipp</creatorcontrib><creatorcontrib>Bucior, Benjamin</creatorcontrib><creatorcontrib>Tuci, Giulia</creatorcontrib><creatorcontrib>Luconi, Lapo</creatorcontrib><creatorcontrib>Getzschmann, Jürgen</creatorcontrib><creatorcontrib>Kaskel, Stefan</creatorcontrib><creatorcontrib>Snurr, Randall Q</creatorcontrib><creatorcontrib>Giambastiani, Giuliano</creatorcontrib><creatorcontrib>Rossin, Andrea</creatorcontrib><title>Computational screening, synthesis and testing of metal-organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates</title><title>Molecular systems design & engineering</title><description>Computational crystal construction algorithms were used to create twelve metal-organic frameworks containing a newly synthesized [2,2′-bithiazole]-5,5′-dicarboxylic acid (H
2
TzTz) spacer and assorted transition metal nodes. Among the twelve structures, the zirconium-based MOF of general formula [Zr
6
O
4
(OH)
4
(TzTz)
6
] (
1
) was found to be the best candidate for carbon dioxide uptake, as judged from the results of the grand canonical Monte Carlo (GCMC) simulations of CO
2
adsorption isotherms. Guided by the simulation results,
1
was synthesized in the laboratory and thoroughly characterized.
1
is isoreticular to its bithiophene and bis(benzene) (UiO-67) analogues; it crystallizes in the cubic
Pn
3&cmb.macr; space group with
fcu
topology, and it features octahedral [Zr
6
] nodes connected by twelve carboxylate groups from six bridging TzTz
2−
spacers. It is a predominantly microporous material (micropore volume = 84% of the total pore volume), with a BET area of 840 m
2
g
−1
and a maximum CO
2
uptake at ambient pressure of 2.3 mmol g
−1
(10.0 wt%) or 1.7 mmol g
−1
(7.5 wt%) at 273 or 298 K, respectively. The CO
2
affinity (isosteric heat of adsorption
Q
st
= 18.7 kJ mol
−1
; CO
2
/N
2
Henry selectivity = 10; CO
2
/N
2
IAST selectivity = 8.4) is similar to that of its bithiophene analogue. After partial removal of solvent (activation),
1
was tested as a heterogeneous catalyst in the reaction of CO
2
with epoxides bearing a -CH
2
X pendant arm (X = Cl: epichlorohydrin; X = Br: epibromohydrin) to give the corresponding cyclic carbonates at
T
= 393 K and
p
CO
2
= 1 bar under green (solvent- and co-catalyst-free) conditions. A good conversion of 74% and a turnover frequency of 12.3 mmol (cyclic carbonate) per mmol
Zr
per h have been recorded with epibromohydrin as a substrate.
A combined theoretical-experimental approach has been exploited for the design of a zirconium bithiazole-based MOF for CO
2
adsorption and its reaction with epoxides under green conditions.</description><subject>Algorithms</subject><subject>Benzene</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Carbonates</subject><subject>Catalysts</subject><subject>Computer simulation</subject><subject>Conversion</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Data acquisition</subject><subject>Dicarboxylic acids</subject><subject>Epichlorohydrin</subject><subject>Heat of adsorption</subject><subject>Metal-organic frameworks</subject><subject>Nodes</subject><subject>Pressure</subject><subject>Selectivity</subject><subject>Solvents</subject><subject>Substrates</subject><subject>Synthesis</subject><subject>Tobacco</subject><subject>Topology</subject><subject>Transition metals</subject><subject>Zirconium</subject><issn>2058-9689</issn><issn>2058-9689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEElXbC3ekAW6IUNv52PiIokKRiriUs-VMxrtuEzvYXsr2R_EbcRsEPXEae-bxzOt5i-IFZ-85q-QZypkYY63AJ8WRYE1XyraTTx-dnxenMV5nhrddK5r2qPjV-3nZJ52sd3qCiIHIWbd9B_Hg0o6ijaDdCIliymnwBmZKeip92GpnEUzQM936cBPh1qYdaBhysPrOTwSTdTcUwPgAqMPgHYzW_7Qj5euS9oEeetsUYXs_F9C7HxRi1gLWJQ94wCnPWN_qrOGkeGb0FOn0Tzwuvn08v-ovysuvnz73Hy5LrDlPZVdvBomyGkm3HXGJnSG9abqGY6ObWvDKVLwba8M0H2TboGAbRnWNyDVjg6iOi9drX5-_rSLaRLjL6hxhUrypRC1kht6s0BL8931ekLr2-5DXGJWoGN_Uec88U29XCoOPMZBRS7CzDgfFmbr3TfXyy_mDb32GX65wiPiX--drrr_6X10to6l-A8fUo3s</recordid><startdate>20191007</startdate><enddate>20191007</enddate><creator>Müller, Philipp</creator><creator>Bucior, Benjamin</creator><creator>Tuci, Giulia</creator><creator>Luconi, Lapo</creator><creator>Getzschmann, Jürgen</creator><creator>Kaskel, Stefan</creator><creator>Snurr, Randall Q</creator><creator>Giambastiani, Giuliano</creator><creator>Rossin, Andrea</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1283-2803</orcidid><orcidid>https://orcid.org/0000-0002-3411-989X</orcidid><orcidid>https://orcid.org/0000-0003-2925-9246</orcidid><orcidid>https://orcid.org/0000-0002-0315-3286</orcidid><orcidid>https://orcid.org/0000-0002-8545-3898</orcidid><orcidid>https://orcid.org/0000-0003-4572-0303</orcidid><orcidid>https://orcid.org/000000023411989X</orcidid><orcidid>https://orcid.org/0000000329259246</orcidid><orcidid>https://orcid.org/0000000285453898</orcidid><orcidid>https://orcid.org/0000000212832803</orcidid><orcidid>https://orcid.org/0000000345720303</orcidid><orcidid>https://orcid.org/0000000203153286</orcidid></search><sort><creationdate>20191007</creationdate><title>Computational screening, synthesis and testing of metal-organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates</title><author>Müller, Philipp ; Bucior, Benjamin ; Tuci, Giulia ; Luconi, Lapo ; Getzschmann, Jürgen ; Kaskel, Stefan ; Snurr, Randall Q ; Giambastiani, Giuliano ; Rossin, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-847b9c93dea68e19c8fea75851c5a54213f318d4f0a1b965c2070e44cc1a00b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Benzene</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Carbonates</topic><topic>Catalysts</topic><topic>Computer simulation</topic><topic>Conversion</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Data acquisition</topic><topic>Dicarboxylic acids</topic><topic>Epichlorohydrin</topic><topic>Heat of adsorption</topic><topic>Metal-organic frameworks</topic><topic>Nodes</topic><topic>Pressure</topic><topic>Selectivity</topic><topic>Solvents</topic><topic>Substrates</topic><topic>Synthesis</topic><topic>Tobacco</topic><topic>Topology</topic><topic>Transition metals</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Philipp</creatorcontrib><creatorcontrib>Bucior, Benjamin</creatorcontrib><creatorcontrib>Tuci, Giulia</creatorcontrib><creatorcontrib>Luconi, Lapo</creatorcontrib><creatorcontrib>Getzschmann, Jürgen</creatorcontrib><creatorcontrib>Kaskel, Stefan</creatorcontrib><creatorcontrib>Snurr, Randall Q</creatorcontrib><creatorcontrib>Giambastiani, Giuliano</creatorcontrib><creatorcontrib>Rossin, Andrea</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Molecular systems design & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Philipp</au><au>Bucior, Benjamin</au><au>Tuci, Giulia</au><au>Luconi, Lapo</au><au>Getzschmann, Jürgen</au><au>Kaskel, Stefan</au><au>Snurr, Randall Q</au><au>Giambastiani, Giuliano</au><au>Rossin, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational screening, synthesis and testing of metal-organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates</atitle><jtitle>Molecular systems design & engineering</jtitle><date>2019-10-07</date><risdate>2019</risdate><volume>4</volume><issue>5</issue><spage>1</spage><epage>113</epage><pages>1-113</pages><issn>2058-9689</issn><eissn>2058-9689</eissn><abstract>Computational crystal construction algorithms were used to create twelve metal-organic frameworks containing a newly synthesized [2,2′-bithiazole]-5,5′-dicarboxylic acid (H
2
TzTz) spacer and assorted transition metal nodes. Among the twelve structures, the zirconium-based MOF of general formula [Zr
6
O
4
(OH)
4
(TzTz)
6
] (
1
) was found to be the best candidate for carbon dioxide uptake, as judged from the results of the grand canonical Monte Carlo (GCMC) simulations of CO
2
adsorption isotherms. Guided by the simulation results,
1
was synthesized in the laboratory and thoroughly characterized.
1
is isoreticular to its bithiophene and bis(benzene) (UiO-67) analogues; it crystallizes in the cubic
Pn
3&cmb.macr; space group with
fcu
topology, and it features octahedral [Zr
6
] nodes connected by twelve carboxylate groups from six bridging TzTz
2−
spacers. It is a predominantly microporous material (micropore volume = 84% of the total pore volume), with a BET area of 840 m
2
g
−1
and a maximum CO
2
uptake at ambient pressure of 2.3 mmol g
−1
(10.0 wt%) or 1.7 mmol g
−1
(7.5 wt%) at 273 or 298 K, respectively. The CO
2
affinity (isosteric heat of adsorption
Q
st
= 18.7 kJ mol
−1
; CO
2
/N
2
Henry selectivity = 10; CO
2
/N
2
IAST selectivity = 8.4) is similar to that of its bithiophene analogue. After partial removal of solvent (activation),
1
was tested as a heterogeneous catalyst in the reaction of CO
2
with epoxides bearing a -CH
2
X pendant arm (X = Cl: epichlorohydrin; X = Br: epibromohydrin) to give the corresponding cyclic carbonates at
T
= 393 K and
p
CO
2
= 1 bar under green (solvent- and co-catalyst-free) conditions. A good conversion of 74% and a turnover frequency of 12.3 mmol (cyclic carbonate) per mmol
Zr
per h have been recorded with epibromohydrin as a substrate.
A combined theoretical-experimental approach has been exploited for the design of a zirconium bithiazole-based MOF for CO
2
adsorption and its reaction with epoxides under green conditions.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9me00062c</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1283-2803</orcidid><orcidid>https://orcid.org/0000-0002-3411-989X</orcidid><orcidid>https://orcid.org/0000-0003-2925-9246</orcidid><orcidid>https://orcid.org/0000-0002-0315-3286</orcidid><orcidid>https://orcid.org/0000-0002-8545-3898</orcidid><orcidid>https://orcid.org/0000-0003-4572-0303</orcidid><orcidid>https://orcid.org/000000023411989X</orcidid><orcidid>https://orcid.org/0000000329259246</orcidid><orcidid>https://orcid.org/0000000285453898</orcidid><orcidid>https://orcid.org/0000000212832803</orcidid><orcidid>https://orcid.org/0000000345720303</orcidid><orcidid>https://orcid.org/0000000203153286</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-9689 |
ispartof | Molecular systems design & engineering, 2019-10, Vol.4 (5), p.1-113 |
issn | 2058-9689 2058-9689 |
language | eng |
recordid | cdi_rsc_primary_c9me00062c |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Algorithms Benzene Carbon dioxide Carbon sequestration Carbonates Catalysts Computer simulation Conversion Crystal structure Crystallography Data acquisition Dicarboxylic acids Epichlorohydrin Heat of adsorption Metal-organic frameworks Nodes Pressure Selectivity Solvents Substrates Synthesis Tobacco Topology Transition metals Zirconium |
title | Computational screening, synthesis and testing of metal-organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20screening,%20synthesis%20and%20testing%20of%20metal-organic%20frameworks%20with%20a%20bithiazole%20linker%20for%20carbon%20dioxide%20capture%20and%20its%20green%20conversion%20into%20cyclic%20carbonates&rft.jtitle=Molecular%20systems%20design%20&%20engineering&rft.au=M%C3%BCller,%20Philipp&rft.date=2019-10-07&rft.volume=4&rft.issue=5&rft.spage=1&rft.epage=113&rft.pages=1-113&rft.issn=2058-9689&rft.eissn=2058-9689&rft_id=info:doi/10.1039/c9me00062c&rft_dat=%3Cproquest_rsc_p%3E2301740011%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2301740011&rft_id=info:pmid/&rfr_iscdi=true |