Contactless, programmable acoustofluidic manipulation of objects on water

Contact-free manipulation of small objects ( e.g. , cells, tissues, and droplets) using acoustic waves eliminates physical contact with structures and undesired surface adsorption. Pioneering acoustic-based, contact-free manipulation techniques ( e.g. , acoustic levitation) enable programmable manip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2019-10, Vol.19 (2), p.3397-344
Hauptverfasser: Zhang, Peiran, Chen, Chuyi, Guo, Feng, Philippe, Julien, Gu, Yuyang, Tian, Zhenhua, Bachman, Hunter, Ren, Liqiang, Yang, Shujie, Zhong, Zhanwei, Huang, Po-Hsun, Katsanis, Nicholas, Chakrabarty, Krishnendu, Huang, Tony Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue 2
container_start_page 3397
container_title Lab on a chip
container_volume 19
creator Zhang, Peiran
Chen, Chuyi
Guo, Feng
Philippe, Julien
Gu, Yuyang
Tian, Zhenhua
Bachman, Hunter
Ren, Liqiang
Yang, Shujie
Zhong, Zhanwei
Huang, Po-Hsun
Katsanis, Nicholas
Chakrabarty, Krishnendu
Huang, Tony Jun
description Contact-free manipulation of small objects ( e.g. , cells, tissues, and droplets) using acoustic waves eliminates physical contact with structures and undesired surface adsorption. Pioneering acoustic-based, contact-free manipulation techniques ( e.g. , acoustic levitation) enable programmable manipulation but are limited by evaporation, bulky transducers, and inefficient acoustic coupling in air. Herein, we report an acoustofluidic mechanism for the contactless manipulation of small objects on water. A hollow-square-shaped interdigital transducer (IDT) is fabricated on lithium niobate (LiNbO 3 ), immersed in water and used as a sound source to generate acoustic waves and as a micropump to pump fluid in the ± x and ± y orthogonal directions. As a result, objects which float adjacent to the excited IDT can be pushed unidirectionally (horizontally) in ± x and ± y following the directed acoustic wave propagation. A fluidic processor was developed by patterning IDT units in a 6-by-6 array. We demonstrate contactless, programmable manipulation on water of oil droplets and zebrafish larvae. This acoustofluidic-based manipulation opens avenues for the contactless, programmable processing of materials and small biosamples. Immersed interdigital transducer array enables contactless, programmable manipulation floating objects on water via acoustofluidics.
doi_str_mv 10.1039/c9lc00465c
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9lc00465c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2303019928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-1a060f47f25b7adcf4f0d477b420e0361c909e3491e08a0dfe19a20f7c08ed633</originalsourceid><addsrcrecordid>eNp9kc1P3DAQxa0KVGDbS--gIC4Iddtx7I3tS6Uq4mOllXppz5bj2DQrJw62A-K_x7B0Cxw4zYzeT08z8xD6guEbBiK-a-E0AK0W-gPax5SROWAudra9YHvoIMY1AF7Qin9EewQvgFeU7qNl7YekdHImxq_FGPx1UH2vGmcKpf0Uk7du6tpOF70aunFyKnV-KLwtfLM2OsUiT3cqmfAJ7Vrlovn8XGfoz8X57_pqvvp1uax_ruaaCpzmWEEFljJbLhqmWm2phZYy1tASDJAKawHCkMwa4Apaa7BQJVimgZu2ImSGfmx8x6npTavNkIJycgxdr8K99KqTr5Wh-yuv_a2sBKEUs2xw-mwQ_M1kYpJ9F7VxTg0mXyzLknNGcclpRk_eoGs_hSGfJ0sCJL9WlDxTZxtKBx9jMHa7DAb5mJCsxap-SqjO8NHL9bfov0gycLgBQtRb9X_EWT9-T5dja8kDMQKh3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303019928</pqid></control><display><type>article</type><title>Contactless, programmable acoustofluidic manipulation of objects on water</title><source>Alma/SFX Local Collection</source><source>Royal Society of Chemistry</source><creator>Zhang, Peiran ; Chen, Chuyi ; Guo, Feng ; Philippe, Julien ; Gu, Yuyang ; Tian, Zhenhua ; Bachman, Hunter ; Ren, Liqiang ; Yang, Shujie ; Zhong, Zhanwei ; Huang, Po-Hsun ; Katsanis, Nicholas ; Chakrabarty, Krishnendu ; Huang, Tony Jun</creator><creatorcontrib>Zhang, Peiran ; Chen, Chuyi ; Guo, Feng ; Philippe, Julien ; Gu, Yuyang ; Tian, Zhenhua ; Bachman, Hunter ; Ren, Liqiang ; Yang, Shujie ; Zhong, Zhanwei ; Huang, Po-Hsun ; Katsanis, Nicholas ; Chakrabarty, Krishnendu ; Huang, Tony Jun</creatorcontrib><description>Contact-free manipulation of small objects ( e.g. , cells, tissues, and droplets) using acoustic waves eliminates physical contact with structures and undesired surface adsorption. Pioneering acoustic-based, contact-free manipulation techniques ( e.g. , acoustic levitation) enable programmable manipulation but are limited by evaporation, bulky transducers, and inefficient acoustic coupling in air. Herein, we report an acoustofluidic mechanism for the contactless manipulation of small objects on water. A hollow-square-shaped interdigital transducer (IDT) is fabricated on lithium niobate (LiNbO 3 ), immersed in water and used as a sound source to generate acoustic waves and as a micropump to pump fluid in the ± x and ± y orthogonal directions. As a result, objects which float adjacent to the excited IDT can be pushed unidirectionally (horizontally) in ± x and ± y following the directed acoustic wave propagation. A fluidic processor was developed by patterning IDT units in a 6-by-6 array. We demonstrate contactless, programmable manipulation on water of oil droplets and zebrafish larvae. This acoustofluidic-based manipulation opens avenues for the contactless, programmable processing of materials and small biosamples. Immersed interdigital transducer array enables contactless, programmable manipulation floating objects on water via acoustofluidics.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c9lc00465c</identifier><identifier>PMID: 31508644</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acoustic coupling ; Acoustic levitation ; Acoustic propagation ; Acoustic waves ; Acoustics ; Droplets ; Larvae ; Lithium niobates ; Microprocessors ; Sound sources ; Transducers ; Wave propagation ; Zebrafish</subject><ispartof>Lab on a chip, 2019-10, Vol.19 (2), p.3397-344</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-1a060f47f25b7adcf4f0d477b420e0361c909e3491e08a0dfe19a20f7c08ed633</citedby><cites>FETCH-LOGICAL-c491t-1a060f47f25b7adcf4f0d477b420e0361c909e3491e08a0dfe19a20f7c08ed633</cites><orcidid>0000-0003-0863-4609 ; 0000-0003-1906-7259 ; 0000-0001-9103-3235 ; 0000-0003-1205-3313 ; 0000-0002-0946-574X ; 0000-0003-4475-6435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31508644$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Peiran</creatorcontrib><creatorcontrib>Chen, Chuyi</creatorcontrib><creatorcontrib>Guo, Feng</creatorcontrib><creatorcontrib>Philippe, Julien</creatorcontrib><creatorcontrib>Gu, Yuyang</creatorcontrib><creatorcontrib>Tian, Zhenhua</creatorcontrib><creatorcontrib>Bachman, Hunter</creatorcontrib><creatorcontrib>Ren, Liqiang</creatorcontrib><creatorcontrib>Yang, Shujie</creatorcontrib><creatorcontrib>Zhong, Zhanwei</creatorcontrib><creatorcontrib>Huang, Po-Hsun</creatorcontrib><creatorcontrib>Katsanis, Nicholas</creatorcontrib><creatorcontrib>Chakrabarty, Krishnendu</creatorcontrib><creatorcontrib>Huang, Tony Jun</creatorcontrib><title>Contactless, programmable acoustofluidic manipulation of objects on water</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Contact-free manipulation of small objects ( e.g. , cells, tissues, and droplets) using acoustic waves eliminates physical contact with structures and undesired surface adsorption. Pioneering acoustic-based, contact-free manipulation techniques ( e.g. , acoustic levitation) enable programmable manipulation but are limited by evaporation, bulky transducers, and inefficient acoustic coupling in air. Herein, we report an acoustofluidic mechanism for the contactless manipulation of small objects on water. A hollow-square-shaped interdigital transducer (IDT) is fabricated on lithium niobate (LiNbO 3 ), immersed in water and used as a sound source to generate acoustic waves and as a micropump to pump fluid in the ± x and ± y orthogonal directions. As a result, objects which float adjacent to the excited IDT can be pushed unidirectionally (horizontally) in ± x and ± y following the directed acoustic wave propagation. A fluidic processor was developed by patterning IDT units in a 6-by-6 array. We demonstrate contactless, programmable manipulation on water of oil droplets and zebrafish larvae. This acoustofluidic-based manipulation opens avenues for the contactless, programmable processing of materials and small biosamples. Immersed interdigital transducer array enables contactless, programmable manipulation floating objects on water via acoustofluidics.</description><subject>Acoustic coupling</subject><subject>Acoustic levitation</subject><subject>Acoustic propagation</subject><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Droplets</subject><subject>Larvae</subject><subject>Lithium niobates</subject><subject>Microprocessors</subject><subject>Sound sources</subject><subject>Transducers</subject><subject>Wave propagation</subject><subject>Zebrafish</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1P3DAQxa0KVGDbS--gIC4Iddtx7I3tS6Uq4mOllXppz5bj2DQrJw62A-K_x7B0Cxw4zYzeT08z8xD6guEbBiK-a-E0AK0W-gPax5SROWAudra9YHvoIMY1AF7Qin9EewQvgFeU7qNl7YekdHImxq_FGPx1UH2vGmcKpf0Uk7du6tpOF70aunFyKnV-KLwtfLM2OsUiT3cqmfAJ7Vrlovn8XGfoz8X57_pqvvp1uax_ruaaCpzmWEEFljJbLhqmWm2phZYy1tASDJAKawHCkMwa4Apaa7BQJVimgZu2ImSGfmx8x6npTavNkIJycgxdr8K99KqTr5Wh-yuv_a2sBKEUs2xw-mwQ_M1kYpJ9F7VxTg0mXyzLknNGcclpRk_eoGs_hSGfJ0sCJL9WlDxTZxtKBx9jMHa7DAb5mJCsxap-SqjO8NHL9bfov0gycLgBQtRb9X_EWT9-T5dja8kDMQKh3g</recordid><startdate>20191009</startdate><enddate>20191009</enddate><creator>Zhang, Peiran</creator><creator>Chen, Chuyi</creator><creator>Guo, Feng</creator><creator>Philippe, Julien</creator><creator>Gu, Yuyang</creator><creator>Tian, Zhenhua</creator><creator>Bachman, Hunter</creator><creator>Ren, Liqiang</creator><creator>Yang, Shujie</creator><creator>Zhong, Zhanwei</creator><creator>Huang, Po-Hsun</creator><creator>Katsanis, Nicholas</creator><creator>Chakrabarty, Krishnendu</creator><creator>Huang, Tony Jun</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0863-4609</orcidid><orcidid>https://orcid.org/0000-0003-1906-7259</orcidid><orcidid>https://orcid.org/0000-0001-9103-3235</orcidid><orcidid>https://orcid.org/0000-0003-1205-3313</orcidid><orcidid>https://orcid.org/0000-0002-0946-574X</orcidid><orcidid>https://orcid.org/0000-0003-4475-6435</orcidid></search><sort><creationdate>20191009</creationdate><title>Contactless, programmable acoustofluidic manipulation of objects on water</title><author>Zhang, Peiran ; Chen, Chuyi ; Guo, Feng ; Philippe, Julien ; Gu, Yuyang ; Tian, Zhenhua ; Bachman, Hunter ; Ren, Liqiang ; Yang, Shujie ; Zhong, Zhanwei ; Huang, Po-Hsun ; Katsanis, Nicholas ; Chakrabarty, Krishnendu ; Huang, Tony Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-1a060f47f25b7adcf4f0d477b420e0361c909e3491e08a0dfe19a20f7c08ed633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic coupling</topic><topic>Acoustic levitation</topic><topic>Acoustic propagation</topic><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Droplets</topic><topic>Larvae</topic><topic>Lithium niobates</topic><topic>Microprocessors</topic><topic>Sound sources</topic><topic>Transducers</topic><topic>Wave propagation</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Peiran</creatorcontrib><creatorcontrib>Chen, Chuyi</creatorcontrib><creatorcontrib>Guo, Feng</creatorcontrib><creatorcontrib>Philippe, Julien</creatorcontrib><creatorcontrib>Gu, Yuyang</creatorcontrib><creatorcontrib>Tian, Zhenhua</creatorcontrib><creatorcontrib>Bachman, Hunter</creatorcontrib><creatorcontrib>Ren, Liqiang</creatorcontrib><creatorcontrib>Yang, Shujie</creatorcontrib><creatorcontrib>Zhong, Zhanwei</creatorcontrib><creatorcontrib>Huang, Po-Hsun</creatorcontrib><creatorcontrib>Katsanis, Nicholas</creatorcontrib><creatorcontrib>Chakrabarty, Krishnendu</creatorcontrib><creatorcontrib>Huang, Tony Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Peiran</au><au>Chen, Chuyi</au><au>Guo, Feng</au><au>Philippe, Julien</au><au>Gu, Yuyang</au><au>Tian, Zhenhua</au><au>Bachman, Hunter</au><au>Ren, Liqiang</au><au>Yang, Shujie</au><au>Zhong, Zhanwei</au><au>Huang, Po-Hsun</au><au>Katsanis, Nicholas</au><au>Chakrabarty, Krishnendu</au><au>Huang, Tony Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contactless, programmable acoustofluidic manipulation of objects on water</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2019-10-09</date><risdate>2019</risdate><volume>19</volume><issue>2</issue><spage>3397</spage><epage>344</epage><pages>3397-344</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Contact-free manipulation of small objects ( e.g. , cells, tissues, and droplets) using acoustic waves eliminates physical contact with structures and undesired surface adsorption. Pioneering acoustic-based, contact-free manipulation techniques ( e.g. , acoustic levitation) enable programmable manipulation but are limited by evaporation, bulky transducers, and inefficient acoustic coupling in air. Herein, we report an acoustofluidic mechanism for the contactless manipulation of small objects on water. A hollow-square-shaped interdigital transducer (IDT) is fabricated on lithium niobate (LiNbO 3 ), immersed in water and used as a sound source to generate acoustic waves and as a micropump to pump fluid in the ± x and ± y orthogonal directions. As a result, objects which float adjacent to the excited IDT can be pushed unidirectionally (horizontally) in ± x and ± y following the directed acoustic wave propagation. A fluidic processor was developed by patterning IDT units in a 6-by-6 array. We demonstrate contactless, programmable manipulation on water of oil droplets and zebrafish larvae. This acoustofluidic-based manipulation opens avenues for the contactless, programmable processing of materials and small biosamples. Immersed interdigital transducer array enables contactless, programmable manipulation floating objects on water via acoustofluidics.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31508644</pmid><doi>10.1039/c9lc00465c</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0863-4609</orcidid><orcidid>https://orcid.org/0000-0003-1906-7259</orcidid><orcidid>https://orcid.org/0000-0001-9103-3235</orcidid><orcidid>https://orcid.org/0000-0003-1205-3313</orcidid><orcidid>https://orcid.org/0000-0002-0946-574X</orcidid><orcidid>https://orcid.org/0000-0003-4475-6435</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2019-10, Vol.19 (2), p.3397-344
issn 1473-0197
1473-0189
language eng
recordid cdi_rsc_primary_c9lc00465c
source Alma/SFX Local Collection; Royal Society of Chemistry
subjects Acoustic coupling
Acoustic levitation
Acoustic propagation
Acoustic waves
Acoustics
Droplets
Larvae
Lithium niobates
Microprocessors
Sound sources
Transducers
Wave propagation
Zebrafish
title Contactless, programmable acoustofluidic manipulation of objects on water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contactless,%20programmable%20acoustofluidic%20manipulation%20of%20objects%20on%20water&rft.jtitle=Lab%20on%20a%20chip&rft.au=Zhang,%20Peiran&rft.date=2019-10-09&rft.volume=19&rft.issue=2&rft.spage=3397&rft.epage=344&rft.pages=3397-344&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c9lc00465c&rft_dat=%3Cproquest_rsc_p%3E2303019928%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303019928&rft_id=info:pmid/31508644&rfr_iscdi=true