PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics
With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It sh...
Gespeichert in:
Veröffentlicht in: | Chemical Society reviews 2021-07, Vol.5 (14), p.8248-8278 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8278 |
---|---|
container_issue | 14 |
container_start_page | 8248 |
container_title | Chemical Society reviews |
container_volume | 5 |
creator | Zhang, Han-Yue Chen, Xiao-Gang Tang, Yuan-Yuan Liao, Wei-Qiang Di, Fang-Fang Mu, Xin Peng, Hang Xiong, Ren-Gen |
description | With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.
Along with the rapid development of ferroelectrochemistry, piezoresponse force microscopy (PFM) with high detection speed and accuracy has become a powerful tool for screening the potential candidates for molecular ferroelectrics. |
doi_str_mv | 10.1039/c9cs00504h |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9cs00504h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552972113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-58240c378ece2ff785f8da0f0f825134982e678c6e733a8618f3a881b705a59d3</originalsourceid><addsrcrecordid>eNqNkUtr3TAQhUVoaW7SbrIvGLpJUtyO3vKymDwKeRTaro0ij1oFX8uRbEry66PbGxLoqquZYb4znJkh5IDCJwq8-ewalwEkiN87ZEWFglpoIV6RFXBQNQBlu2Qv59uSUa3YG7LLBRgKSqzI1bfTy-pwCvgQE-YpjhkrH5PDah1citnF6f6otqHHvuoxh1_jpl2t44BuGWyqPKYUsVRzCi6_Ja-9HTK-e4r75OfpyY_2vL64PvvafrmoHTcw19IwAY5rgw6Z99pIb3oLHrxhknLRGIZKG6dQc26NosaXYOiNBmll0_N9cridO6V4t2Ceu3XIDofBjhiX3DHJlQEqGlrQD_-gt3FJY3FXKMkazSjlhTreUpulc0LfTSmsbbrvKHSbK3dt037_e-XzAn_cwn_wJvrsAo4OnwUAoKQWqqElg40B8_90G2Y7hzi2cRnnIn2_labsnhUv7-aPKfOWoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552972113</pqid></control><display><type>article</type><title>PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Zhang, Han-Yue ; Chen, Xiao-Gang ; Tang, Yuan-Yuan ; Liao, Wei-Qiang ; Di, Fang-Fang ; Mu, Xin ; Peng, Hang ; Xiong, Ren-Gen</creator><creatorcontrib>Zhang, Han-Yue ; Chen, Xiao-Gang ; Tang, Yuan-Yuan ; Liao, Wei-Qiang ; Di, Fang-Fang ; Mu, Xin ; Peng, Hang ; Xiong, Ren-Gen</creatorcontrib><description>With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.
Along with the rapid development of ferroelectrochemistry, piezoresponse force microscopy (PFM) with high detection speed and accuracy has become a powerful tool for screening the potential candidates for molecular ferroelectrics.</description><identifier>ISSN: 0306-0012</identifier><identifier>EISSN: 1460-4744</identifier><identifier>DOI: 10.1039/c9cs00504h</identifier><identifier>PMID: 34081064</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Crystallography ; Design optimization ; Ferroelectric domains ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Microscopy ; Nondestructive testing ; Physical properties ; Physical Sciences ; Piezoelectricity ; Science & Technology</subject><ispartof>Chemical Society reviews, 2021-07, Vol.5 (14), p.8248-8278</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>70</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000657469100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c380t-58240c378ece2ff785f8da0f0f825134982e678c6e733a8618f3a881b705a59d3</citedby><cites>FETCH-LOGICAL-c380t-58240c378ece2ff785f8da0f0f825134982e678c6e733a8618f3a881b705a59d3</cites><orcidid>0000-0002-8369-572X ; 0000-0002-5359-7037 ; 0000-0003-2364-0193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934,39267</link.rule.ids></links><search><creatorcontrib>Zhang, Han-Yue</creatorcontrib><creatorcontrib>Chen, Xiao-Gang</creatorcontrib><creatorcontrib>Tang, Yuan-Yuan</creatorcontrib><creatorcontrib>Liao, Wei-Qiang</creatorcontrib><creatorcontrib>Di, Fang-Fang</creatorcontrib><creatorcontrib>Mu, Xin</creatorcontrib><creatorcontrib>Peng, Hang</creatorcontrib><creatorcontrib>Xiong, Ren-Gen</creatorcontrib><title>PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics</title><title>Chemical Society reviews</title><addtitle>CHEM SOC REV</addtitle><description>With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.
Along with the rapid development of ferroelectrochemistry, piezoresponse force microscopy (PFM) with high detection speed and accuracy has become a powerful tool for screening the potential candidates for molecular ferroelectrics.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Crystallography</subject><subject>Design optimization</subject><subject>Ferroelectric domains</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Microscopy</subject><subject>Nondestructive testing</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Piezoelectricity</subject><subject>Science & Technology</subject><issn>0306-0012</issn><issn>1460-4744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkUtr3TAQhUVoaW7SbrIvGLpJUtyO3vKymDwKeRTaro0ij1oFX8uRbEry66PbGxLoqquZYb4znJkh5IDCJwq8-ewalwEkiN87ZEWFglpoIV6RFXBQNQBlu2Qv59uSUa3YG7LLBRgKSqzI1bfTy-pwCvgQE-YpjhkrH5PDah1citnF6f6otqHHvuoxh1_jpl2t44BuGWyqPKYUsVRzCi6_Ja-9HTK-e4r75OfpyY_2vL64PvvafrmoHTcw19IwAY5rgw6Z99pIb3oLHrxhknLRGIZKG6dQc26NosaXYOiNBmll0_N9cridO6V4t2Ceu3XIDofBjhiX3DHJlQEqGlrQD_-gt3FJY3FXKMkazSjlhTreUpulc0LfTSmsbbrvKHSbK3dt037_e-XzAn_cwn_wJvrsAo4OnwUAoKQWqqElg40B8_90G2Y7hzi2cRnnIn2_labsnhUv7-aPKfOWoQ</recordid><startdate>20210721</startdate><enddate>20210721</enddate><creator>Zhang, Han-Yue</creator><creator>Chen, Xiao-Gang</creator><creator>Tang, Yuan-Yuan</creator><creator>Liao, Wei-Qiang</creator><creator>Di, Fang-Fang</creator><creator>Mu, Xin</creator><creator>Peng, Hang</creator><creator>Xiong, Ren-Gen</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8369-572X</orcidid><orcidid>https://orcid.org/0000-0002-5359-7037</orcidid><orcidid>https://orcid.org/0000-0003-2364-0193</orcidid></search><sort><creationdate>20210721</creationdate><title>PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics</title><author>Zhang, Han-Yue ; Chen, Xiao-Gang ; Tang, Yuan-Yuan ; Liao, Wei-Qiang ; Di, Fang-Fang ; Mu, Xin ; Peng, Hang ; Xiong, Ren-Gen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-58240c378ece2ff785f8da0f0f825134982e678c6e733a8618f3a881b705a59d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Crystallography</topic><topic>Design optimization</topic><topic>Ferroelectric domains</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Microscopy</topic><topic>Nondestructive testing</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Piezoelectricity</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Han-Yue</creatorcontrib><creatorcontrib>Chen, Xiao-Gang</creatorcontrib><creatorcontrib>Tang, Yuan-Yuan</creatorcontrib><creatorcontrib>Liao, Wei-Qiang</creatorcontrib><creatorcontrib>Di, Fang-Fang</creatorcontrib><creatorcontrib>Mu, Xin</creatorcontrib><creatorcontrib>Peng, Hang</creatorcontrib><creatorcontrib>Xiong, Ren-Gen</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical Society reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Han-Yue</au><au>Chen, Xiao-Gang</au><au>Tang, Yuan-Yuan</au><au>Liao, Wei-Qiang</au><au>Di, Fang-Fang</au><au>Mu, Xin</au><au>Peng, Hang</au><au>Xiong, Ren-Gen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics</atitle><jtitle>Chemical Society reviews</jtitle><stitle>CHEM SOC REV</stitle><date>2021-07-21</date><risdate>2021</risdate><volume>5</volume><issue>14</issue><spage>8248</spage><epage>8278</epage><pages>8248-8278</pages><issn>0306-0012</issn><eissn>1460-4744</eissn><abstract>With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.
Along with the rapid development of ferroelectrochemistry, piezoresponse force microscopy (PFM) with high detection speed and accuracy has become a powerful tool for screening the potential candidates for molecular ferroelectrics.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><pmid>34081064</pmid><doi>10.1039/c9cs00504h</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-8369-572X</orcidid><orcidid>https://orcid.org/0000-0002-5359-7037</orcidid><orcidid>https://orcid.org/0000-0003-2364-0193</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-0012 |
ispartof | Chemical Society reviews, 2021-07, Vol.5 (14), p.8248-8278 |
issn | 0306-0012 1460-4744 |
language | eng |
recordid | cdi_rsc_primary_c9cs00504h |
source | Royal Society Of Chemistry Journals 2008-; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Chemistry Chemistry, Multidisciplinary Crystallography Design optimization Ferroelectric domains Ferroelectric materials Ferroelectricity Ferroelectrics Microscopy Nondestructive testing Physical properties Physical Sciences Piezoelectricity Science & Technology |
title | PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T14%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PFM%20(piezoresponse%20force%20microscopy)-aided%20design%20for%20molecular%20ferroelectrics&rft.jtitle=Chemical%20Society%20reviews&rft.au=Zhang,%20Han-Yue&rft.date=2021-07-21&rft.volume=5&rft.issue=14&rft.spage=8248&rft.epage=8278&rft.pages=8248-8278&rft.issn=0306-0012&rft.eissn=1460-4744&rft_id=info:doi/10.1039/c9cs00504h&rft_dat=%3Cproquest_rsc_p%3E2552972113%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552972113&rft_id=info:pmid/34081064&rfr_iscdi=true |