PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics

With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical Society reviews 2021-07, Vol.5 (14), p.8248-8278
Hauptverfasser: Zhang, Han-Yue, Chen, Xiao-Gang, Tang, Yuan-Yuan, Liao, Wei-Qiang, Di, Fang-Fang, Mu, Xin, Peng, Hang, Xiong, Ren-Gen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8278
container_issue 14
container_start_page 8248
container_title Chemical Society reviews
container_volume 5
creator Zhang, Han-Yue
Chen, Xiao-Gang
Tang, Yuan-Yuan
Liao, Wei-Qiang
Di, Fang-Fang
Mu, Xin
Peng, Hang
Xiong, Ren-Gen
description With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others. Along with the rapid development of ferroelectrochemistry, piezoresponse force microscopy (PFM) with high detection speed and accuracy has become a powerful tool for screening the potential candidates for molecular ferroelectrics.
doi_str_mv 10.1039/c9cs00504h
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9cs00504h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552972113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-58240c378ece2ff785f8da0f0f825134982e678c6e733a8618f3a881b705a59d3</originalsourceid><addsrcrecordid>eNqNkUtr3TAQhUVoaW7SbrIvGLpJUtyO3vKymDwKeRTaro0ij1oFX8uRbEry66PbGxLoqquZYb4znJkh5IDCJwq8-ewalwEkiN87ZEWFglpoIV6RFXBQNQBlu2Qv59uSUa3YG7LLBRgKSqzI1bfTy-pwCvgQE-YpjhkrH5PDah1citnF6f6otqHHvuoxh1_jpl2t44BuGWyqPKYUsVRzCi6_Ja-9HTK-e4r75OfpyY_2vL64PvvafrmoHTcw19IwAY5rgw6Z99pIb3oLHrxhknLRGIZKG6dQc26NosaXYOiNBmll0_N9cridO6V4t2Ceu3XIDofBjhiX3DHJlQEqGlrQD_-gt3FJY3FXKMkazSjlhTreUpulc0LfTSmsbbrvKHSbK3dt037_e-XzAn_cwn_wJvrsAo4OnwUAoKQWqqElg40B8_90G2Y7hzi2cRnnIn2_labsnhUv7-aPKfOWoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552972113</pqid></control><display><type>article</type><title>PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Zhang, Han-Yue ; Chen, Xiao-Gang ; Tang, Yuan-Yuan ; Liao, Wei-Qiang ; Di, Fang-Fang ; Mu, Xin ; Peng, Hang ; Xiong, Ren-Gen</creator><creatorcontrib>Zhang, Han-Yue ; Chen, Xiao-Gang ; Tang, Yuan-Yuan ; Liao, Wei-Qiang ; Di, Fang-Fang ; Mu, Xin ; Peng, Hang ; Xiong, Ren-Gen</creatorcontrib><description>With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others. Along with the rapid development of ferroelectrochemistry, piezoresponse force microscopy (PFM) with high detection speed and accuracy has become a powerful tool for screening the potential candidates for molecular ferroelectrics.</description><identifier>ISSN: 0306-0012</identifier><identifier>EISSN: 1460-4744</identifier><identifier>DOI: 10.1039/c9cs00504h</identifier><identifier>PMID: 34081064</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Crystallography ; Design optimization ; Ferroelectric domains ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Microscopy ; Nondestructive testing ; Physical properties ; Physical Sciences ; Piezoelectricity ; Science &amp; Technology</subject><ispartof>Chemical Society reviews, 2021-07, Vol.5 (14), p.8248-8278</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>70</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000657469100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c380t-58240c378ece2ff785f8da0f0f825134982e678c6e733a8618f3a881b705a59d3</citedby><cites>FETCH-LOGICAL-c380t-58240c378ece2ff785f8da0f0f825134982e678c6e733a8618f3a881b705a59d3</cites><orcidid>0000-0002-8369-572X ; 0000-0002-5359-7037 ; 0000-0003-2364-0193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934,39267</link.rule.ids></links><search><creatorcontrib>Zhang, Han-Yue</creatorcontrib><creatorcontrib>Chen, Xiao-Gang</creatorcontrib><creatorcontrib>Tang, Yuan-Yuan</creatorcontrib><creatorcontrib>Liao, Wei-Qiang</creatorcontrib><creatorcontrib>Di, Fang-Fang</creatorcontrib><creatorcontrib>Mu, Xin</creatorcontrib><creatorcontrib>Peng, Hang</creatorcontrib><creatorcontrib>Xiong, Ren-Gen</creatorcontrib><title>PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics</title><title>Chemical Society reviews</title><addtitle>CHEM SOC REV</addtitle><description>With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others. Along with the rapid development of ferroelectrochemistry, piezoresponse force microscopy (PFM) with high detection speed and accuracy has become a powerful tool for screening the potential candidates for molecular ferroelectrics.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Crystallography</subject><subject>Design optimization</subject><subject>Ferroelectric domains</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Microscopy</subject><subject>Nondestructive testing</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Piezoelectricity</subject><subject>Science &amp; Technology</subject><issn>0306-0012</issn><issn>1460-4744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkUtr3TAQhUVoaW7SbrIvGLpJUtyO3vKymDwKeRTaro0ij1oFX8uRbEry66PbGxLoqquZYb4znJkh5IDCJwq8-ewalwEkiN87ZEWFglpoIV6RFXBQNQBlu2Qv59uSUa3YG7LLBRgKSqzI1bfTy-pwCvgQE-YpjhkrH5PDah1citnF6f6otqHHvuoxh1_jpl2t44BuGWyqPKYUsVRzCi6_Ja-9HTK-e4r75OfpyY_2vL64PvvafrmoHTcw19IwAY5rgw6Z99pIb3oLHrxhknLRGIZKG6dQc26NosaXYOiNBmll0_N9cridO6V4t2Ceu3XIDofBjhiX3DHJlQEqGlrQD_-gt3FJY3FXKMkazSjlhTreUpulc0LfTSmsbbrvKHSbK3dt037_e-XzAn_cwn_wJvrsAo4OnwUAoKQWqqElg40B8_90G2Y7hzi2cRnnIn2_labsnhUv7-aPKfOWoQ</recordid><startdate>20210721</startdate><enddate>20210721</enddate><creator>Zhang, Han-Yue</creator><creator>Chen, Xiao-Gang</creator><creator>Tang, Yuan-Yuan</creator><creator>Liao, Wei-Qiang</creator><creator>Di, Fang-Fang</creator><creator>Mu, Xin</creator><creator>Peng, Hang</creator><creator>Xiong, Ren-Gen</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8369-572X</orcidid><orcidid>https://orcid.org/0000-0002-5359-7037</orcidid><orcidid>https://orcid.org/0000-0003-2364-0193</orcidid></search><sort><creationdate>20210721</creationdate><title>PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics</title><author>Zhang, Han-Yue ; Chen, Xiao-Gang ; Tang, Yuan-Yuan ; Liao, Wei-Qiang ; Di, Fang-Fang ; Mu, Xin ; Peng, Hang ; Xiong, Ren-Gen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-58240c378ece2ff785f8da0f0f825134982e678c6e733a8618f3a881b705a59d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Crystallography</topic><topic>Design optimization</topic><topic>Ferroelectric domains</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Microscopy</topic><topic>Nondestructive testing</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Piezoelectricity</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Han-Yue</creatorcontrib><creatorcontrib>Chen, Xiao-Gang</creatorcontrib><creatorcontrib>Tang, Yuan-Yuan</creatorcontrib><creatorcontrib>Liao, Wei-Qiang</creatorcontrib><creatorcontrib>Di, Fang-Fang</creatorcontrib><creatorcontrib>Mu, Xin</creatorcontrib><creatorcontrib>Peng, Hang</creatorcontrib><creatorcontrib>Xiong, Ren-Gen</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical Society reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Han-Yue</au><au>Chen, Xiao-Gang</au><au>Tang, Yuan-Yuan</au><au>Liao, Wei-Qiang</au><au>Di, Fang-Fang</au><au>Mu, Xin</au><au>Peng, Hang</au><au>Xiong, Ren-Gen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics</atitle><jtitle>Chemical Society reviews</jtitle><stitle>CHEM SOC REV</stitle><date>2021-07-21</date><risdate>2021</risdate><volume>5</volume><issue>14</issue><spage>8248</spage><epage>8278</epage><pages>8248-8278</pages><issn>0306-0012</issn><eissn>1460-4744</eissn><abstract>With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others. Along with the rapid development of ferroelectrochemistry, piezoresponse force microscopy (PFM) with high detection speed and accuracy has become a powerful tool for screening the potential candidates for molecular ferroelectrics.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><pmid>34081064</pmid><doi>10.1039/c9cs00504h</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-8369-572X</orcidid><orcidid>https://orcid.org/0000-0002-5359-7037</orcidid><orcidid>https://orcid.org/0000-0003-2364-0193</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-0012
ispartof Chemical Society reviews, 2021-07, Vol.5 (14), p.8248-8278
issn 0306-0012
1460-4744
language eng
recordid cdi_rsc_primary_c9cs00504h
source Royal Society Of Chemistry Journals 2008-; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Chemistry
Chemistry, Multidisciplinary
Crystallography
Design optimization
Ferroelectric domains
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Microscopy
Nondestructive testing
Physical properties
Physical Sciences
Piezoelectricity
Science & Technology
title PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T14%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PFM%20(piezoresponse%20force%20microscopy)-aided%20design%20for%20molecular%20ferroelectrics&rft.jtitle=Chemical%20Society%20reviews&rft.au=Zhang,%20Han-Yue&rft.date=2021-07-21&rft.volume=5&rft.issue=14&rft.spage=8248&rft.epage=8278&rft.pages=8248-8278&rft.issn=0306-0012&rft.eissn=1460-4744&rft_id=info:doi/10.1039/c9cs00504h&rft_dat=%3Cproquest_rsc_p%3E2552972113%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552972113&rft_id=info:pmid/34081064&rfr_iscdi=true