Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions
Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries. The successful commercialisation of solid-state lithium batteries depends on understanding...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2019-10, Vol.21 (41), p.2274-22755 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22755 |
---|---|
container_issue | 41 |
container_start_page | 2274 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 21 |
creator | Pang, Mei-Chin Hao, Yucang Marinescu, Monica Wang, Huizhi Chen, Mu Offer, Gregory J |
description | Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries. The successful commercialisation of solid-state lithium batteries depends on understanding and addressing the bottlenecks limiting the cell performance under realistic operational conditions such as dynamic current profiles of different pulse amplitudes. This study focuses on experimental analysis and continuum modelling of cell behaviour under pulse operating conditions, with most model parameters estimated from experimental measurements. By using a combined impedance and distribution of relaxation times analysis, we show that charge transfer at both interfaces occurs between the microseconds and milliseconds timescale. We also demonstrate that a simplified set of governing equations, rather than the conventional PoissonNernstPlanck equations, are sufficient to reproduce the experimentally observed behaviour during pulse discharge, pulse charging and dynamic pulse. Our simulation results suggest that solid diffusion in bulk LiCoO
2
is the performance limiting mechanism under pulse operating conditions, with increasing voltage loss for lower states of charge. If bulk electrode forms the positive electrode, improvement in the ionic conductivity of the solid electrolyte beyond 10
4
S cm
1
yields marginal overall performance gains due to this solid diffusion limitation. Instead of further increasing the electrode thickness or improving the ionic conductivity on their own, we propose a holistic model-based approach to cell design, in order to achieve optimum performance for known operating conditions.
Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries. |
doi_str_mv | 10.1039/c9cp03886h |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9cp03886h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2297126320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-ad7329258f6f501cc128c3b5d12d2fdfa97581a9db23c93a24709cc745816ec83</originalsourceid><addsrcrecordid>eNpdkclKBDEQhhtRcFwu3oWAFxFas_SWowxuIOhBz02spJ0M3UmbSoPzGL6xmRlR8FTbVz9F_Vl2wuglo0JegYSRiqapFjvZjBWVyCVtit3fvK72swPEJaWUlUzMsq-bz9EEOxgXVU-U08RNQ2rAplL9Ci2S6InVibDdisSFIWmj82FQDgzp7WCjde9kMLBQzuKAxDqCvrc6x6jiGokLOw0ETN8jmZw2gYxTj4b4pKQ22-CdTjre4VG216k0PP6Jh9nr7c3L_D5_fLp7mF8_5iBKFnOla8ElL5uu6krKABhvQLyVmnHNO90pWZcNU1K_cQFSKF7UVALURepWBhpxmJ1vdcfgPyaDsR0srk9UzvgJW85lzXglOE3o2T906aeQvpMoQRshy6pYUxdbCoJHDKZrx_RYFVYto-3anXYu588bd-4TfLqFA8Iv9-ee-AZDwo9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308395640</pqid></control><display><type>article</type><title>Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Pang, Mei-Chin ; Hao, Yucang ; Marinescu, Monica ; Wang, Huizhi ; Chen, Mu ; Offer, Gregory J</creator><creatorcontrib>Pang, Mei-Chin ; Hao, Yucang ; Marinescu, Monica ; Wang, Huizhi ; Chen, Mu ; Offer, Gregory J</creatorcontrib><description>Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries. The successful commercialisation of solid-state lithium batteries depends on understanding and addressing the bottlenecks limiting the cell performance under realistic operational conditions such as dynamic current profiles of different pulse amplitudes. This study focuses on experimental analysis and continuum modelling of cell behaviour under pulse operating conditions, with most model parameters estimated from experimental measurements. By using a combined impedance and distribution of relaxation times analysis, we show that charge transfer at both interfaces occurs between the microseconds and milliseconds timescale. We also demonstrate that a simplified set of governing equations, rather than the conventional PoissonNernstPlanck equations, are sufficient to reproduce the experimentally observed behaviour during pulse discharge, pulse charging and dynamic pulse. Our simulation results suggest that solid diffusion in bulk LiCoO
2
is the performance limiting mechanism under pulse operating conditions, with increasing voltage loss for lower states of charge. If bulk electrode forms the positive electrode, improvement in the ionic conductivity of the solid electrolyte beyond 10
4
S cm
1
yields marginal overall performance gains due to this solid diffusion limitation. Instead of further increasing the electrode thickness or improving the ionic conductivity on their own, we propose a holistic model-based approach to cell design, in order to achieve optimum performance for known operating conditions.
Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp03886h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge transfer ; Commercialization ; Computer simulation ; Constraining ; Continuum modeling ; Electrodes ; Electrolytic cells ; Flux density ; Gravimetry ; Ion currents ; Lithium ; Lithium batteries ; Lithium-ion batteries ; Mathematical models ; Numerical analysis ; Parameter estimation ; Pulse charging ; Rechargeable batteries ; Solid electrolytes ; Solid state ; Thermal runaway</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019-10, Vol.21 (41), p.2274-22755</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-ad7329258f6f501cc128c3b5d12d2fdfa97581a9db23c93a24709cc745816ec83</citedby><cites>FETCH-LOGICAL-c351t-ad7329258f6f501cc128c3b5d12d2fdfa97581a9db23c93a24709cc745816ec83</cites><orcidid>0000-0003-1324-8366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Pang, Mei-Chin</creatorcontrib><creatorcontrib>Hao, Yucang</creatorcontrib><creatorcontrib>Marinescu, Monica</creatorcontrib><creatorcontrib>Wang, Huizhi</creatorcontrib><creatorcontrib>Chen, Mu</creatorcontrib><creatorcontrib>Offer, Gregory J</creatorcontrib><title>Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions</title><title>Physical chemistry chemical physics : PCCP</title><description>Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries. The successful commercialisation of solid-state lithium batteries depends on understanding and addressing the bottlenecks limiting the cell performance under realistic operational conditions such as dynamic current profiles of different pulse amplitudes. This study focuses on experimental analysis and continuum modelling of cell behaviour under pulse operating conditions, with most model parameters estimated from experimental measurements. By using a combined impedance and distribution of relaxation times analysis, we show that charge transfer at both interfaces occurs between the microseconds and milliseconds timescale. We also demonstrate that a simplified set of governing equations, rather than the conventional PoissonNernstPlanck equations, are sufficient to reproduce the experimentally observed behaviour during pulse discharge, pulse charging and dynamic pulse. Our simulation results suggest that solid diffusion in bulk LiCoO
2
is the performance limiting mechanism under pulse operating conditions, with increasing voltage loss for lower states of charge. If bulk electrode forms the positive electrode, improvement in the ionic conductivity of the solid electrolyte beyond 10
4
S cm
1
yields marginal overall performance gains due to this solid diffusion limitation. Instead of further increasing the electrode thickness or improving the ionic conductivity on their own, we propose a holistic model-based approach to cell design, in order to achieve optimum performance for known operating conditions.
Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.</description><subject>Charge transfer</subject><subject>Commercialization</subject><subject>Computer simulation</subject><subject>Constraining</subject><subject>Continuum modeling</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Flux density</subject><subject>Gravimetry</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Parameter estimation</subject><subject>Pulse charging</subject><subject>Rechargeable batteries</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Thermal runaway</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkclKBDEQhhtRcFwu3oWAFxFas_SWowxuIOhBz02spJ0M3UmbSoPzGL6xmRlR8FTbVz9F_Vl2wuglo0JegYSRiqapFjvZjBWVyCVtit3fvK72swPEJaWUlUzMsq-bz9EEOxgXVU-U08RNQ2rAplL9Ci2S6InVibDdisSFIWmj82FQDgzp7WCjde9kMLBQzuKAxDqCvrc6x6jiGokLOw0ETN8jmZw2gYxTj4b4pKQ22-CdTjre4VG216k0PP6Jh9nr7c3L_D5_fLp7mF8_5iBKFnOla8ElL5uu6krKABhvQLyVmnHNO90pWZcNU1K_cQFSKF7UVALURepWBhpxmJ1vdcfgPyaDsR0srk9UzvgJW85lzXglOE3o2T906aeQvpMoQRshy6pYUxdbCoJHDKZrx_RYFVYto-3anXYu588bd-4TfLqFA8Iv9-ee-AZDwo9Y</recordid><startdate>20191024</startdate><enddate>20191024</enddate><creator>Pang, Mei-Chin</creator><creator>Hao, Yucang</creator><creator>Marinescu, Monica</creator><creator>Wang, Huizhi</creator><creator>Chen, Mu</creator><creator>Offer, Gregory J</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1324-8366</orcidid></search><sort><creationdate>20191024</creationdate><title>Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions</title><author>Pang, Mei-Chin ; Hao, Yucang ; Marinescu, Monica ; Wang, Huizhi ; Chen, Mu ; Offer, Gregory J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-ad7329258f6f501cc128c3b5d12d2fdfa97581a9db23c93a24709cc745816ec83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge transfer</topic><topic>Commercialization</topic><topic>Computer simulation</topic><topic>Constraining</topic><topic>Continuum modeling</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Flux density</topic><topic>Gravimetry</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Parameter estimation</topic><topic>Pulse charging</topic><topic>Rechargeable batteries</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Thermal runaway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Mei-Chin</creatorcontrib><creatorcontrib>Hao, Yucang</creatorcontrib><creatorcontrib>Marinescu, Monica</creatorcontrib><creatorcontrib>Wang, Huizhi</creatorcontrib><creatorcontrib>Chen, Mu</creatorcontrib><creatorcontrib>Offer, Gregory J</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Mei-Chin</au><au>Hao, Yucang</au><au>Marinescu, Monica</au><au>Wang, Huizhi</au><au>Chen, Mu</au><au>Offer, Gregory J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2019-10-24</date><risdate>2019</risdate><volume>21</volume><issue>41</issue><spage>2274</spage><epage>22755</epage><pages>2274-22755</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries. The successful commercialisation of solid-state lithium batteries depends on understanding and addressing the bottlenecks limiting the cell performance under realistic operational conditions such as dynamic current profiles of different pulse amplitudes. This study focuses on experimental analysis and continuum modelling of cell behaviour under pulse operating conditions, with most model parameters estimated from experimental measurements. By using a combined impedance and distribution of relaxation times analysis, we show that charge transfer at both interfaces occurs between the microseconds and milliseconds timescale. We also demonstrate that a simplified set of governing equations, rather than the conventional PoissonNernstPlanck equations, are sufficient to reproduce the experimentally observed behaviour during pulse discharge, pulse charging and dynamic pulse. Our simulation results suggest that solid diffusion in bulk LiCoO
2
is the performance limiting mechanism under pulse operating conditions, with increasing voltage loss for lower states of charge. If bulk electrode forms the positive electrode, improvement in the ionic conductivity of the solid electrolyte beyond 10
4
S cm
1
yields marginal overall performance gains due to this solid diffusion limitation. Instead of further increasing the electrode thickness or improving the ionic conductivity on their own, we propose a holistic model-based approach to cell design, in order to achieve optimum performance for known operating conditions.
Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cp03886h</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1324-8366</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2019-10, Vol.21 (41), p.2274-22755 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_rsc_primary_c9cp03886h |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Charge transfer Commercialization Computer simulation Constraining Continuum modeling Electrodes Electrolytic cells Flux density Gravimetry Ion currents Lithium Lithium batteries Lithium-ion batteries Mathematical models Numerical analysis Parameter estimation Pulse charging Rechargeable batteries Solid electrolytes Solid state Thermal runaway |
title | Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20analysis%20to%20identify%20the%20performance%20limiting%20mechanisms%20in%20solid-state%20lithium%20cells%20under%20pulse%20operating%20conditions&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Pang,%20Mei-Chin&rft.date=2019-10-24&rft.volume=21&rft.issue=41&rft.spage=2274&rft.epage=22755&rft.pages=2274-22755&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp03886h&rft_dat=%3Cproquest_rsc_p%3E2297126320%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308395640&rft_id=info:pmid/&rfr_iscdi=true |