Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions

Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries. The successful commercialisation of solid-state lithium batteries depends on understanding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2019-10, Vol.21 (41), p.2274-22755
Hauptverfasser: Pang, Mei-Chin, Hao, Yucang, Marinescu, Monica, Wang, Huizhi, Chen, Mu, Offer, Gregory J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22755
container_issue 41
container_start_page 2274
container_title Physical chemistry chemical physics : PCCP
container_volume 21
creator Pang, Mei-Chin
Hao, Yucang
Marinescu, Monica
Wang, Huizhi
Chen, Mu
Offer, Gregory J
description Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries. The successful commercialisation of solid-state lithium batteries depends on understanding and addressing the bottlenecks limiting the cell performance under realistic operational conditions such as dynamic current profiles of different pulse amplitudes. This study focuses on experimental analysis and continuum modelling of cell behaviour under pulse operating conditions, with most model parameters estimated from experimental measurements. By using a combined impedance and distribution of relaxation times analysis, we show that charge transfer at both interfaces occurs between the microseconds and milliseconds timescale. We also demonstrate that a simplified set of governing equations, rather than the conventional PoissonNernstPlanck equations, are sufficient to reproduce the experimentally observed behaviour during pulse discharge, pulse charging and dynamic pulse. Our simulation results suggest that solid diffusion in bulk LiCoO 2 is the performance limiting mechanism under pulse operating conditions, with increasing voltage loss for lower states of charge. If bulk electrode forms the positive electrode, improvement in the ionic conductivity of the solid electrolyte beyond 10 4 S cm 1 yields marginal overall performance gains due to this solid diffusion limitation. Instead of further increasing the electrode thickness or improving the ionic conductivity on their own, we propose a holistic model-based approach to cell design, in order to achieve optimum performance for known operating conditions. Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.
doi_str_mv 10.1039/c9cp03886h
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c9cp03886h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2297126320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-ad7329258f6f501cc128c3b5d12d2fdfa97581a9db23c93a24709cc745816ec83</originalsourceid><addsrcrecordid>eNpdkclKBDEQhhtRcFwu3oWAFxFas_SWowxuIOhBz02spJ0M3UmbSoPzGL6xmRlR8FTbVz9F_Vl2wuglo0JegYSRiqapFjvZjBWVyCVtit3fvK72swPEJaWUlUzMsq-bz9EEOxgXVU-U08RNQ2rAplL9Ci2S6InVibDdisSFIWmj82FQDgzp7WCjde9kMLBQzuKAxDqCvrc6x6jiGokLOw0ETN8jmZw2gYxTj4b4pKQ22-CdTjre4VG216k0PP6Jh9nr7c3L_D5_fLp7mF8_5iBKFnOla8ElL5uu6krKABhvQLyVmnHNO90pWZcNU1K_cQFSKF7UVALURepWBhpxmJ1vdcfgPyaDsR0srk9UzvgJW85lzXglOE3o2T906aeQvpMoQRshy6pYUxdbCoJHDKZrx_RYFVYto-3anXYu588bd-4TfLqFA8Iv9-ee-AZDwo9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308395640</pqid></control><display><type>article</type><title>Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Pang, Mei-Chin ; Hao, Yucang ; Marinescu, Monica ; Wang, Huizhi ; Chen, Mu ; Offer, Gregory J</creator><creatorcontrib>Pang, Mei-Chin ; Hao, Yucang ; Marinescu, Monica ; Wang, Huizhi ; Chen, Mu ; Offer, Gregory J</creatorcontrib><description>Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries. The successful commercialisation of solid-state lithium batteries depends on understanding and addressing the bottlenecks limiting the cell performance under realistic operational conditions such as dynamic current profiles of different pulse amplitudes. This study focuses on experimental analysis and continuum modelling of cell behaviour under pulse operating conditions, with most model parameters estimated from experimental measurements. By using a combined impedance and distribution of relaxation times analysis, we show that charge transfer at both interfaces occurs between the microseconds and milliseconds timescale. We also demonstrate that a simplified set of governing equations, rather than the conventional PoissonNernstPlanck equations, are sufficient to reproduce the experimentally observed behaviour during pulse discharge, pulse charging and dynamic pulse. Our simulation results suggest that solid diffusion in bulk LiCoO 2 is the performance limiting mechanism under pulse operating conditions, with increasing voltage loss for lower states of charge. If bulk electrode forms the positive electrode, improvement in the ionic conductivity of the solid electrolyte beyond 10 4 S cm 1 yields marginal overall performance gains due to this solid diffusion limitation. Instead of further increasing the electrode thickness or improving the ionic conductivity on their own, we propose a holistic model-based approach to cell design, in order to achieve optimum performance for known operating conditions. Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp03886h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge transfer ; Commercialization ; Computer simulation ; Constraining ; Continuum modeling ; Electrodes ; Electrolytic cells ; Flux density ; Gravimetry ; Ion currents ; Lithium ; Lithium batteries ; Lithium-ion batteries ; Mathematical models ; Numerical analysis ; Parameter estimation ; Pulse charging ; Rechargeable batteries ; Solid electrolytes ; Solid state ; Thermal runaway</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019-10, Vol.21 (41), p.2274-22755</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-ad7329258f6f501cc128c3b5d12d2fdfa97581a9db23c93a24709cc745816ec83</citedby><cites>FETCH-LOGICAL-c351t-ad7329258f6f501cc128c3b5d12d2fdfa97581a9db23c93a24709cc745816ec83</cites><orcidid>0000-0003-1324-8366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Pang, Mei-Chin</creatorcontrib><creatorcontrib>Hao, Yucang</creatorcontrib><creatorcontrib>Marinescu, Monica</creatorcontrib><creatorcontrib>Wang, Huizhi</creatorcontrib><creatorcontrib>Chen, Mu</creatorcontrib><creatorcontrib>Offer, Gregory J</creatorcontrib><title>Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions</title><title>Physical chemistry chemical physics : PCCP</title><description>Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries. The successful commercialisation of solid-state lithium batteries depends on understanding and addressing the bottlenecks limiting the cell performance under realistic operational conditions such as dynamic current profiles of different pulse amplitudes. This study focuses on experimental analysis and continuum modelling of cell behaviour under pulse operating conditions, with most model parameters estimated from experimental measurements. By using a combined impedance and distribution of relaxation times analysis, we show that charge transfer at both interfaces occurs between the microseconds and milliseconds timescale. We also demonstrate that a simplified set of governing equations, rather than the conventional PoissonNernstPlanck equations, are sufficient to reproduce the experimentally observed behaviour during pulse discharge, pulse charging and dynamic pulse. Our simulation results suggest that solid diffusion in bulk LiCoO 2 is the performance limiting mechanism under pulse operating conditions, with increasing voltage loss for lower states of charge. If bulk electrode forms the positive electrode, improvement in the ionic conductivity of the solid electrolyte beyond 10 4 S cm 1 yields marginal overall performance gains due to this solid diffusion limitation. Instead of further increasing the electrode thickness or improving the ionic conductivity on their own, we propose a holistic model-based approach to cell design, in order to achieve optimum performance for known operating conditions. Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.</description><subject>Charge transfer</subject><subject>Commercialization</subject><subject>Computer simulation</subject><subject>Constraining</subject><subject>Continuum modeling</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Flux density</subject><subject>Gravimetry</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Parameter estimation</subject><subject>Pulse charging</subject><subject>Rechargeable batteries</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Thermal runaway</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkclKBDEQhhtRcFwu3oWAFxFas_SWowxuIOhBz02spJ0M3UmbSoPzGL6xmRlR8FTbVz9F_Vl2wuglo0JegYSRiqapFjvZjBWVyCVtit3fvK72swPEJaWUlUzMsq-bz9EEOxgXVU-U08RNQ2rAplL9Ci2S6InVibDdisSFIWmj82FQDgzp7WCjde9kMLBQzuKAxDqCvrc6x6jiGokLOw0ETN8jmZw2gYxTj4b4pKQ22-CdTjre4VG216k0PP6Jh9nr7c3L_D5_fLp7mF8_5iBKFnOla8ElL5uu6krKABhvQLyVmnHNO90pWZcNU1K_cQFSKF7UVALURepWBhpxmJ1vdcfgPyaDsR0srk9UzvgJW85lzXglOE3o2T906aeQvpMoQRshy6pYUxdbCoJHDKZrx_RYFVYto-3anXYu588bd-4TfLqFA8Iv9-ee-AZDwo9Y</recordid><startdate>20191024</startdate><enddate>20191024</enddate><creator>Pang, Mei-Chin</creator><creator>Hao, Yucang</creator><creator>Marinescu, Monica</creator><creator>Wang, Huizhi</creator><creator>Chen, Mu</creator><creator>Offer, Gregory J</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1324-8366</orcidid></search><sort><creationdate>20191024</creationdate><title>Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions</title><author>Pang, Mei-Chin ; Hao, Yucang ; Marinescu, Monica ; Wang, Huizhi ; Chen, Mu ; Offer, Gregory J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-ad7329258f6f501cc128c3b5d12d2fdfa97581a9db23c93a24709cc745816ec83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge transfer</topic><topic>Commercialization</topic><topic>Computer simulation</topic><topic>Constraining</topic><topic>Continuum modeling</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Flux density</topic><topic>Gravimetry</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Parameter estimation</topic><topic>Pulse charging</topic><topic>Rechargeable batteries</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Thermal runaway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Mei-Chin</creatorcontrib><creatorcontrib>Hao, Yucang</creatorcontrib><creatorcontrib>Marinescu, Monica</creatorcontrib><creatorcontrib>Wang, Huizhi</creatorcontrib><creatorcontrib>Chen, Mu</creatorcontrib><creatorcontrib>Offer, Gregory J</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Mei-Chin</au><au>Hao, Yucang</au><au>Marinescu, Monica</au><au>Wang, Huizhi</au><au>Chen, Mu</au><au>Offer, Gregory J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2019-10-24</date><risdate>2019</risdate><volume>21</volume><issue>41</issue><spage>2274</spage><epage>22755</epage><pages>2274-22755</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries. The successful commercialisation of solid-state lithium batteries depends on understanding and addressing the bottlenecks limiting the cell performance under realistic operational conditions such as dynamic current profiles of different pulse amplitudes. This study focuses on experimental analysis and continuum modelling of cell behaviour under pulse operating conditions, with most model parameters estimated from experimental measurements. By using a combined impedance and distribution of relaxation times analysis, we show that charge transfer at both interfaces occurs between the microseconds and milliseconds timescale. We also demonstrate that a simplified set of governing equations, rather than the conventional PoissonNernstPlanck equations, are sufficient to reproduce the experimentally observed behaviour during pulse discharge, pulse charging and dynamic pulse. Our simulation results suggest that solid diffusion in bulk LiCoO 2 is the performance limiting mechanism under pulse operating conditions, with increasing voltage loss for lower states of charge. If bulk electrode forms the positive electrode, improvement in the ionic conductivity of the solid electrolyte beyond 10 4 S cm 1 yields marginal overall performance gains due to this solid diffusion limitation. Instead of further increasing the electrode thickness or improving the ionic conductivity on their own, we propose a holistic model-based approach to cell design, in order to achieve optimum performance for known operating conditions. Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cp03886h</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1324-8366</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2019-10, Vol.21 (41), p.2274-22755
issn 1463-9076
1463-9084
language eng
recordid cdi_rsc_primary_c9cp03886h
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Charge transfer
Commercialization
Computer simulation
Constraining
Continuum modeling
Electrodes
Electrolytic cells
Flux density
Gravimetry
Ion currents
Lithium
Lithium batteries
Lithium-ion batteries
Mathematical models
Numerical analysis
Parameter estimation
Pulse charging
Rechargeable batteries
Solid electrolytes
Solid state
Thermal runaway
title Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20analysis%20to%20identify%20the%20performance%20limiting%20mechanisms%20in%20solid-state%20lithium%20cells%20under%20pulse%20operating%20conditions&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Pang,%20Mei-Chin&rft.date=2019-10-24&rft.volume=21&rft.issue=41&rft.spage=2274&rft.epage=22755&rft.pages=2274-22755&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp03886h&rft_dat=%3Cproquest_rsc_p%3E2297126320%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308395640&rft_id=info:pmid/&rfr_iscdi=true