Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration

Various attempts are increasingly being made to decrease the thickness of polyamide (PA) nanofilms, in order to promote water transport. Despite optimization of interfacial polymerization (IP), it is challenging to prepare defect-free, ultrathin nanofilms in situ on top of membrane substrates. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (32), p.1571-1579
Hauptverfasser: Zhu, Junyong, Hou, Jingwei, Zhang, Ruijun, Yuan, Shushan, Li, Jian, Tian, Miaomiao, Wang, Penghui, Zhang, Yatao, Volodin, Alexander, Van der Bruggen, Bart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1579
container_issue 32
container_start_page 1571
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Zhu, Junyong
Hou, Jingwei
Zhang, Ruijun
Yuan, Shushan
Li, Jian
Tian, Miaomiao
Wang, Penghui
Zhang, Yatao
Volodin, Alexander
Van der Bruggen, Bart
description Various attempts are increasingly being made to decrease the thickness of polyamide (PA) nanofilms, in order to promote water transport. Despite optimization of interfacial polymerization (IP), it is challenging to prepare defect-free, ultrathin nanofilms in situ on top of membrane substrates. This issue is closely linked to the rapid, uncontrolled IP reaction, and the physicochemical properties of support materials. In this study, PA nanofilms less than 12 nm in thickness were fabricated at a free water-hexane interface, followed by directly transferring them onto polydopamine (PDA) coated polymer substrates via vacuum filtration. This method not only efficaciously controls the nanofilm thickness, but also largely reduces the monomer content compared to a traditional IP process. Manipulation of nanofilm thickness and structure through fine-tuning the monomer concentration enables the formation of smooth, ultrathin, and robust PA layers. Composite membranes with polypiperazine amide nanofilms exhibit a high water permeance (25.1 L m −2 h −1 bar −1 ), and an excellent divalent salt rejection ( R Na 2 SO 4 = 99.1%). This more than doubles the permeance of a commercial nanofiltration (NF) membrane, although the Na 2 SO 4 retention is generally below 98.5%. Importantly, the low NaCl retention endows the nanofilm composite membranes with a high mono/divalent salt selectivity (80.6). This facile, one-pot strategy provides a useful guideline for the construction of highly permeable TFC membranes for water purification. Filtration-assisted preparation of high-performance nanofilm composite membranes used for nanofiltration with fast water transport and excellent mono/divalent salt selectivity.
doi_str_mv 10.1039/c8ta05687k
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8ta05687k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088008641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-cb43027d2b862cfeace91d5788f91a67a078ad3ff92d6ed0e52a8f8cd76511033</originalsourceid><addsrcrecordid>eNpFkEtLAzEQgIMoWGov3oWAN3E1-8rOHkvxhQVB6nlJ8-im7iZrkkX6702t1LnMwHwzw3wIXabkLiV5fc8hMFJSqD5P0CQjJUmqoqanxxrgHM2835IYQAit6wnq39mgBf5mQTocHDN-sC7g0Do7blrMrQnOdh1bd_IWj10kQqsNHmy3Y70WEhtmrNJd77GyDrd60yaDdLHumeHH9n5OW3OBzhTrvJz95Sn6eHxYLZ6T5dvTy2K-THgORUj4ushJVolsDTTjSjIu61SUFYCqU0YrRipgIleqzgSVgsgyY6CAi4qWaVSRT9H1Ye_g7NcofWi2dnQmnmwyAvF3oEUaqZsDxZ313knVDE73zO2alDR7o80CVvNfo68RvjrAzvMj9288_wGJsnWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088008641</pqid></control><display><type>article</type><title>Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhu, Junyong ; Hou, Jingwei ; Zhang, Ruijun ; Yuan, Shushan ; Li, Jian ; Tian, Miaomiao ; Wang, Penghui ; Zhang, Yatao ; Volodin, Alexander ; Van der Bruggen, Bart</creator><creatorcontrib>Zhu, Junyong ; Hou, Jingwei ; Zhang, Ruijun ; Yuan, Shushan ; Li, Jian ; Tian, Miaomiao ; Wang, Penghui ; Zhang, Yatao ; Volodin, Alexander ; Van der Bruggen, Bart</creatorcontrib><description>Various attempts are increasingly being made to decrease the thickness of polyamide (PA) nanofilms, in order to promote water transport. Despite optimization of interfacial polymerization (IP), it is challenging to prepare defect-free, ultrathin nanofilms in situ on top of membrane substrates. This issue is closely linked to the rapid, uncontrolled IP reaction, and the physicochemical properties of support materials. In this study, PA nanofilms less than 12 nm in thickness were fabricated at a free water-hexane interface, followed by directly transferring them onto polydopamine (PDA) coated polymer substrates via vacuum filtration. This method not only efficaciously controls the nanofilm thickness, but also largely reduces the monomer content compared to a traditional IP process. Manipulation of nanofilm thickness and structure through fine-tuning the monomer concentration enables the formation of smooth, ultrathin, and robust PA layers. Composite membranes with polypiperazine amide nanofilms exhibit a high water permeance (25.1 L m −2 h −1 bar −1 ), and an excellent divalent salt rejection ( R Na 2 SO 4 = 99.1%). This more than doubles the permeance of a commercial nanofiltration (NF) membrane, although the Na 2 SO 4 retention is generally below 98.5%. Importantly, the low NaCl retention endows the nanofilm composite membranes with a high mono/divalent salt selectivity (80.6). This facile, one-pot strategy provides a useful guideline for the construction of highly permeable TFC membranes for water purification. Filtration-assisted preparation of high-performance nanofilm composite membranes used for nanofiltration with fast water transport and excellent mono/divalent salt selectivity.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c8ta05687k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Composite materials ; Filtration ; Membranes ; Monomers ; Nanofiltration ; Nanotechnology ; Optimization ; Physicochemical properties ; Polyamide resins ; Polyamides ; Polymerization ; Purification ; Reluctance ; Retention ; Salt rejection ; Sodium chloride ; Sodium sulfate ; Stability ; Substrates ; Thickness ; Transport ; Vacuum ; Vacuum filtration ; Water purification ; Water transport ; Water treatment</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (32), p.1571-1579</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-cb43027d2b862cfeace91d5788f91a67a078ad3ff92d6ed0e52a8f8cd76511033</citedby><cites>FETCH-LOGICAL-c384t-cb43027d2b862cfeace91d5788f91a67a078ad3ff92d6ed0e52a8f8cd76511033</cites><orcidid>0000-0002-6832-3127 ; 0000-0002-1200-715X ; 0000-0001-9139-9835 ; 0000-0002-9598-9979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhu, Junyong</creatorcontrib><creatorcontrib>Hou, Jingwei</creatorcontrib><creatorcontrib>Zhang, Ruijun</creatorcontrib><creatorcontrib>Yuan, Shushan</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Tian, Miaomiao</creatorcontrib><creatorcontrib>Wang, Penghui</creatorcontrib><creatorcontrib>Zhang, Yatao</creatorcontrib><creatorcontrib>Volodin, Alexander</creatorcontrib><creatorcontrib>Van der Bruggen, Bart</creatorcontrib><title>Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Various attempts are increasingly being made to decrease the thickness of polyamide (PA) nanofilms, in order to promote water transport. Despite optimization of interfacial polymerization (IP), it is challenging to prepare defect-free, ultrathin nanofilms in situ on top of membrane substrates. This issue is closely linked to the rapid, uncontrolled IP reaction, and the physicochemical properties of support materials. In this study, PA nanofilms less than 12 nm in thickness were fabricated at a free water-hexane interface, followed by directly transferring them onto polydopamine (PDA) coated polymer substrates via vacuum filtration. This method not only efficaciously controls the nanofilm thickness, but also largely reduces the monomer content compared to a traditional IP process. Manipulation of nanofilm thickness and structure through fine-tuning the monomer concentration enables the formation of smooth, ultrathin, and robust PA layers. Composite membranes with polypiperazine amide nanofilms exhibit a high water permeance (25.1 L m −2 h −1 bar −1 ), and an excellent divalent salt rejection ( R Na 2 SO 4 = 99.1%). This more than doubles the permeance of a commercial nanofiltration (NF) membrane, although the Na 2 SO 4 retention is generally below 98.5%. Importantly, the low NaCl retention endows the nanofilm composite membranes with a high mono/divalent salt selectivity (80.6). This facile, one-pot strategy provides a useful guideline for the construction of highly permeable TFC membranes for water purification. Filtration-assisted preparation of high-performance nanofilm composite membranes used for nanofiltration with fast water transport and excellent mono/divalent salt selectivity.</description><subject>Composite materials</subject><subject>Filtration</subject><subject>Membranes</subject><subject>Monomers</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>Optimization</subject><subject>Physicochemical properties</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Polymerization</subject><subject>Purification</subject><subject>Reluctance</subject><subject>Retention</subject><subject>Salt rejection</subject><subject>Sodium chloride</subject><subject>Sodium sulfate</subject><subject>Stability</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Transport</subject><subject>Vacuum</subject><subject>Vacuum filtration</subject><subject>Water purification</subject><subject>Water transport</subject><subject>Water treatment</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEQgIMoWGov3oWAN3E1-8rOHkvxhQVB6nlJ8-im7iZrkkX6702t1LnMwHwzw3wIXabkLiV5fc8hMFJSqD5P0CQjJUmqoqanxxrgHM2835IYQAit6wnq39mgBf5mQTocHDN-sC7g0Do7blrMrQnOdh1bd_IWj10kQqsNHmy3Y70WEhtmrNJd77GyDrd60yaDdLHumeHH9n5OW3OBzhTrvJz95Sn6eHxYLZ6T5dvTy2K-THgORUj4ushJVolsDTTjSjIu61SUFYCqU0YrRipgIleqzgSVgsgyY6CAi4qWaVSRT9H1Ye_g7NcofWi2dnQmnmwyAvF3oEUaqZsDxZ313knVDE73zO2alDR7o80CVvNfo68RvjrAzvMj9288_wGJsnWY</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Zhu, Junyong</creator><creator>Hou, Jingwei</creator><creator>Zhang, Ruijun</creator><creator>Yuan, Shushan</creator><creator>Li, Jian</creator><creator>Tian, Miaomiao</creator><creator>Wang, Penghui</creator><creator>Zhang, Yatao</creator><creator>Volodin, Alexander</creator><creator>Van der Bruggen, Bart</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6832-3127</orcidid><orcidid>https://orcid.org/0000-0002-1200-715X</orcidid><orcidid>https://orcid.org/0000-0001-9139-9835</orcidid><orcidid>https://orcid.org/0000-0002-9598-9979</orcidid></search><sort><creationdate>2018</creationdate><title>Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration</title><author>Zhu, Junyong ; Hou, Jingwei ; Zhang, Ruijun ; Yuan, Shushan ; Li, Jian ; Tian, Miaomiao ; Wang, Penghui ; Zhang, Yatao ; Volodin, Alexander ; Van der Bruggen, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-cb43027d2b862cfeace91d5788f91a67a078ad3ff92d6ed0e52a8f8cd76511033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Composite materials</topic><topic>Filtration</topic><topic>Membranes</topic><topic>Monomers</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>Optimization</topic><topic>Physicochemical properties</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Polymerization</topic><topic>Purification</topic><topic>Reluctance</topic><topic>Retention</topic><topic>Salt rejection</topic><topic>Sodium chloride</topic><topic>Sodium sulfate</topic><topic>Stability</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Transport</topic><topic>Vacuum</topic><topic>Vacuum filtration</topic><topic>Water purification</topic><topic>Water transport</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Junyong</creatorcontrib><creatorcontrib>Hou, Jingwei</creatorcontrib><creatorcontrib>Zhang, Ruijun</creatorcontrib><creatorcontrib>Yuan, Shushan</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Tian, Miaomiao</creatorcontrib><creatorcontrib>Wang, Penghui</creatorcontrib><creatorcontrib>Zhang, Yatao</creatorcontrib><creatorcontrib>Volodin, Alexander</creatorcontrib><creatorcontrib>Van der Bruggen, Bart</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Junyong</au><au>Hou, Jingwei</au><au>Zhang, Ruijun</au><au>Yuan, Shushan</au><au>Li, Jian</au><au>Tian, Miaomiao</au><au>Wang, Penghui</au><au>Zhang, Yatao</au><au>Volodin, Alexander</au><au>Van der Bruggen, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>32</issue><spage>1571</spage><epage>1579</epage><pages>1571-1579</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Various attempts are increasingly being made to decrease the thickness of polyamide (PA) nanofilms, in order to promote water transport. Despite optimization of interfacial polymerization (IP), it is challenging to prepare defect-free, ultrathin nanofilms in situ on top of membrane substrates. This issue is closely linked to the rapid, uncontrolled IP reaction, and the physicochemical properties of support materials. In this study, PA nanofilms less than 12 nm in thickness were fabricated at a free water-hexane interface, followed by directly transferring them onto polydopamine (PDA) coated polymer substrates via vacuum filtration. This method not only efficaciously controls the nanofilm thickness, but also largely reduces the monomer content compared to a traditional IP process. Manipulation of nanofilm thickness and structure through fine-tuning the monomer concentration enables the formation of smooth, ultrathin, and robust PA layers. Composite membranes with polypiperazine amide nanofilms exhibit a high water permeance (25.1 L m −2 h −1 bar −1 ), and an excellent divalent salt rejection ( R Na 2 SO 4 = 99.1%). This more than doubles the permeance of a commercial nanofiltration (NF) membrane, although the Na 2 SO 4 retention is generally below 98.5%. Importantly, the low NaCl retention endows the nanofilm composite membranes with a high mono/divalent salt selectivity (80.6). This facile, one-pot strategy provides a useful guideline for the construction of highly permeable TFC membranes for water purification. Filtration-assisted preparation of high-performance nanofilm composite membranes used for nanofiltration with fast water transport and excellent mono/divalent salt selectivity.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ta05687k</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6832-3127</orcidid><orcidid>https://orcid.org/0000-0002-1200-715X</orcidid><orcidid>https://orcid.org/0000-0001-9139-9835</orcidid><orcidid>https://orcid.org/0000-0002-9598-9979</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (32), p.1571-1579
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_c8ta05687k
source Royal Society Of Chemistry Journals 2008-
subjects Composite materials
Filtration
Membranes
Monomers
Nanofiltration
Nanotechnology
Optimization
Physicochemical properties
Polyamide resins
Polyamides
Polymerization
Purification
Reluctance
Retention
Salt rejection
Sodium chloride
Sodium sulfate
Stability
Substrates
Thickness
Transport
Vacuum
Vacuum filtration
Water purification
Water transport
Water treatment
title Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20water%20transport%20through%20controllable,%20ultrathin%20polyamide%20nanofilms%20for%20high-performance%20nanofiltration&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhu,%20Junyong&rft.date=2018&rft.volume=6&rft.issue=32&rft.spage=1571&rft.epage=1579&rft.pages=1571-1579&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c8ta05687k&rft_dat=%3Cproquest_rsc_p%3E2088008641%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088008641&rft_id=info:pmid/&rfr_iscdi=true