Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration
Various attempts are increasingly being made to decrease the thickness of polyamide (PA) nanofilms, in order to promote water transport. Despite optimization of interfacial polymerization (IP), it is challenging to prepare defect-free, ultrathin nanofilms in situ on top of membrane substrates. This...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (32), p.1571-1579 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1579 |
---|---|
container_issue | 32 |
container_start_page | 1571 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 6 |
creator | Zhu, Junyong Hou, Jingwei Zhang, Ruijun Yuan, Shushan Li, Jian Tian, Miaomiao Wang, Penghui Zhang, Yatao Volodin, Alexander Van der Bruggen, Bart |
description | Various attempts are increasingly being made to decrease the thickness of polyamide (PA) nanofilms, in order to promote water transport. Despite optimization of interfacial polymerization (IP), it is challenging to prepare defect-free, ultrathin nanofilms
in situ
on top of membrane substrates. This issue is closely linked to the rapid, uncontrolled IP reaction, and the physicochemical properties of support materials. In this study, PA nanofilms less than 12 nm in thickness were fabricated at a free water-hexane interface, followed by directly transferring them onto polydopamine (PDA) coated polymer substrates
via
vacuum filtration. This method not only efficaciously controls the nanofilm thickness, but also largely reduces the monomer content compared to a traditional IP process. Manipulation of nanofilm thickness and structure through fine-tuning the monomer concentration enables the formation of smooth, ultrathin, and robust PA layers. Composite membranes with polypiperazine amide nanofilms exhibit a high water permeance (25.1 L m
−2
h
−1
bar
−1
), and an excellent divalent salt rejection (
R
Na
2
SO
4
= 99.1%). This more than doubles the permeance of a commercial nanofiltration (NF) membrane, although the Na
2
SO
4
retention is generally below 98.5%. Importantly, the low NaCl retention endows the nanofilm composite membranes with a high mono/divalent salt selectivity (80.6). This facile, one-pot strategy provides a useful guideline for the construction of highly permeable TFC membranes for water purification.
Filtration-assisted preparation of high-performance nanofilm composite membranes used for nanofiltration with fast water transport and excellent mono/divalent salt selectivity. |
doi_str_mv | 10.1039/c8ta05687k |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8ta05687k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088008641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-cb43027d2b862cfeace91d5788f91a67a078ad3ff92d6ed0e52a8f8cd76511033</originalsourceid><addsrcrecordid>eNpFkEtLAzEQgIMoWGov3oWAN3E1-8rOHkvxhQVB6nlJ8-im7iZrkkX6702t1LnMwHwzw3wIXabkLiV5fc8hMFJSqD5P0CQjJUmqoqanxxrgHM2835IYQAit6wnq39mgBf5mQTocHDN-sC7g0Do7blrMrQnOdh1bd_IWj10kQqsNHmy3Y70WEhtmrNJd77GyDrd60yaDdLHumeHH9n5OW3OBzhTrvJz95Sn6eHxYLZ6T5dvTy2K-THgORUj4ushJVolsDTTjSjIu61SUFYCqU0YrRipgIleqzgSVgsgyY6CAi4qWaVSRT9H1Ye_g7NcofWi2dnQmnmwyAvF3oEUaqZsDxZ313knVDE73zO2alDR7o80CVvNfo68RvjrAzvMj9288_wGJsnWY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088008641</pqid></control><display><type>article</type><title>Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhu, Junyong ; Hou, Jingwei ; Zhang, Ruijun ; Yuan, Shushan ; Li, Jian ; Tian, Miaomiao ; Wang, Penghui ; Zhang, Yatao ; Volodin, Alexander ; Van der Bruggen, Bart</creator><creatorcontrib>Zhu, Junyong ; Hou, Jingwei ; Zhang, Ruijun ; Yuan, Shushan ; Li, Jian ; Tian, Miaomiao ; Wang, Penghui ; Zhang, Yatao ; Volodin, Alexander ; Van der Bruggen, Bart</creatorcontrib><description>Various attempts are increasingly being made to decrease the thickness of polyamide (PA) nanofilms, in order to promote water transport. Despite optimization of interfacial polymerization (IP), it is challenging to prepare defect-free, ultrathin nanofilms
in situ
on top of membrane substrates. This issue is closely linked to the rapid, uncontrolled IP reaction, and the physicochemical properties of support materials. In this study, PA nanofilms less than 12 nm in thickness were fabricated at a free water-hexane interface, followed by directly transferring them onto polydopamine (PDA) coated polymer substrates
via
vacuum filtration. This method not only efficaciously controls the nanofilm thickness, but also largely reduces the monomer content compared to a traditional IP process. Manipulation of nanofilm thickness and structure through fine-tuning the monomer concentration enables the formation of smooth, ultrathin, and robust PA layers. Composite membranes with polypiperazine amide nanofilms exhibit a high water permeance (25.1 L m
−2
h
−1
bar
−1
), and an excellent divalent salt rejection (
R
Na
2
SO
4
= 99.1%). This more than doubles the permeance of a commercial nanofiltration (NF) membrane, although the Na
2
SO
4
retention is generally below 98.5%. Importantly, the low NaCl retention endows the nanofilm composite membranes with a high mono/divalent salt selectivity (80.6). This facile, one-pot strategy provides a useful guideline for the construction of highly permeable TFC membranes for water purification.
Filtration-assisted preparation of high-performance nanofilm composite membranes used for nanofiltration with fast water transport and excellent mono/divalent salt selectivity.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c8ta05687k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Composite materials ; Filtration ; Membranes ; Monomers ; Nanofiltration ; Nanotechnology ; Optimization ; Physicochemical properties ; Polyamide resins ; Polyamides ; Polymerization ; Purification ; Reluctance ; Retention ; Salt rejection ; Sodium chloride ; Sodium sulfate ; Stability ; Substrates ; Thickness ; Transport ; Vacuum ; Vacuum filtration ; Water purification ; Water transport ; Water treatment</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (32), p.1571-1579</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-cb43027d2b862cfeace91d5788f91a67a078ad3ff92d6ed0e52a8f8cd76511033</citedby><cites>FETCH-LOGICAL-c384t-cb43027d2b862cfeace91d5788f91a67a078ad3ff92d6ed0e52a8f8cd76511033</cites><orcidid>0000-0002-6832-3127 ; 0000-0002-1200-715X ; 0000-0001-9139-9835 ; 0000-0002-9598-9979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhu, Junyong</creatorcontrib><creatorcontrib>Hou, Jingwei</creatorcontrib><creatorcontrib>Zhang, Ruijun</creatorcontrib><creatorcontrib>Yuan, Shushan</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Tian, Miaomiao</creatorcontrib><creatorcontrib>Wang, Penghui</creatorcontrib><creatorcontrib>Zhang, Yatao</creatorcontrib><creatorcontrib>Volodin, Alexander</creatorcontrib><creatorcontrib>Van der Bruggen, Bart</creatorcontrib><title>Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Various attempts are increasingly being made to decrease the thickness of polyamide (PA) nanofilms, in order to promote water transport. Despite optimization of interfacial polymerization (IP), it is challenging to prepare defect-free, ultrathin nanofilms
in situ
on top of membrane substrates. This issue is closely linked to the rapid, uncontrolled IP reaction, and the physicochemical properties of support materials. In this study, PA nanofilms less than 12 nm in thickness were fabricated at a free water-hexane interface, followed by directly transferring them onto polydopamine (PDA) coated polymer substrates
via
vacuum filtration. This method not only efficaciously controls the nanofilm thickness, but also largely reduces the monomer content compared to a traditional IP process. Manipulation of nanofilm thickness and structure through fine-tuning the monomer concentration enables the formation of smooth, ultrathin, and robust PA layers. Composite membranes with polypiperazine amide nanofilms exhibit a high water permeance (25.1 L m
−2
h
−1
bar
−1
), and an excellent divalent salt rejection (
R
Na
2
SO
4
= 99.1%). This more than doubles the permeance of a commercial nanofiltration (NF) membrane, although the Na
2
SO
4
retention is generally below 98.5%. Importantly, the low NaCl retention endows the nanofilm composite membranes with a high mono/divalent salt selectivity (80.6). This facile, one-pot strategy provides a useful guideline for the construction of highly permeable TFC membranes for water purification.
Filtration-assisted preparation of high-performance nanofilm composite membranes used for nanofiltration with fast water transport and excellent mono/divalent salt selectivity.</description><subject>Composite materials</subject><subject>Filtration</subject><subject>Membranes</subject><subject>Monomers</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>Optimization</subject><subject>Physicochemical properties</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Polymerization</subject><subject>Purification</subject><subject>Reluctance</subject><subject>Retention</subject><subject>Salt rejection</subject><subject>Sodium chloride</subject><subject>Sodium sulfate</subject><subject>Stability</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Transport</subject><subject>Vacuum</subject><subject>Vacuum filtration</subject><subject>Water purification</subject><subject>Water transport</subject><subject>Water treatment</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEQgIMoWGov3oWAN3E1-8rOHkvxhQVB6nlJ8-im7iZrkkX6702t1LnMwHwzw3wIXabkLiV5fc8hMFJSqD5P0CQjJUmqoqanxxrgHM2835IYQAit6wnq39mgBf5mQTocHDN-sC7g0Do7blrMrQnOdh1bd_IWj10kQqsNHmy3Y70WEhtmrNJd77GyDrd60yaDdLHumeHH9n5OW3OBzhTrvJz95Sn6eHxYLZ6T5dvTy2K-THgORUj4ushJVolsDTTjSjIu61SUFYCqU0YrRipgIleqzgSVgsgyY6CAi4qWaVSRT9H1Ye_g7NcofWi2dnQmnmwyAvF3oEUaqZsDxZ313knVDE73zO2alDR7o80CVvNfo68RvjrAzvMj9288_wGJsnWY</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Zhu, Junyong</creator><creator>Hou, Jingwei</creator><creator>Zhang, Ruijun</creator><creator>Yuan, Shushan</creator><creator>Li, Jian</creator><creator>Tian, Miaomiao</creator><creator>Wang, Penghui</creator><creator>Zhang, Yatao</creator><creator>Volodin, Alexander</creator><creator>Van der Bruggen, Bart</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6832-3127</orcidid><orcidid>https://orcid.org/0000-0002-1200-715X</orcidid><orcidid>https://orcid.org/0000-0001-9139-9835</orcidid><orcidid>https://orcid.org/0000-0002-9598-9979</orcidid></search><sort><creationdate>2018</creationdate><title>Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration</title><author>Zhu, Junyong ; Hou, Jingwei ; Zhang, Ruijun ; Yuan, Shushan ; Li, Jian ; Tian, Miaomiao ; Wang, Penghui ; Zhang, Yatao ; Volodin, Alexander ; Van der Bruggen, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-cb43027d2b862cfeace91d5788f91a67a078ad3ff92d6ed0e52a8f8cd76511033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Composite materials</topic><topic>Filtration</topic><topic>Membranes</topic><topic>Monomers</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>Optimization</topic><topic>Physicochemical properties</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Polymerization</topic><topic>Purification</topic><topic>Reluctance</topic><topic>Retention</topic><topic>Salt rejection</topic><topic>Sodium chloride</topic><topic>Sodium sulfate</topic><topic>Stability</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Transport</topic><topic>Vacuum</topic><topic>Vacuum filtration</topic><topic>Water purification</topic><topic>Water transport</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Junyong</creatorcontrib><creatorcontrib>Hou, Jingwei</creatorcontrib><creatorcontrib>Zhang, Ruijun</creatorcontrib><creatorcontrib>Yuan, Shushan</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Tian, Miaomiao</creatorcontrib><creatorcontrib>Wang, Penghui</creatorcontrib><creatorcontrib>Zhang, Yatao</creatorcontrib><creatorcontrib>Volodin, Alexander</creatorcontrib><creatorcontrib>Van der Bruggen, Bart</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Junyong</au><au>Hou, Jingwei</au><au>Zhang, Ruijun</au><au>Yuan, Shushan</au><au>Li, Jian</au><au>Tian, Miaomiao</au><au>Wang, Penghui</au><au>Zhang, Yatao</au><au>Volodin, Alexander</au><au>Van der Bruggen, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>32</issue><spage>1571</spage><epage>1579</epage><pages>1571-1579</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Various attempts are increasingly being made to decrease the thickness of polyamide (PA) nanofilms, in order to promote water transport. Despite optimization of interfacial polymerization (IP), it is challenging to prepare defect-free, ultrathin nanofilms
in situ
on top of membrane substrates. This issue is closely linked to the rapid, uncontrolled IP reaction, and the physicochemical properties of support materials. In this study, PA nanofilms less than 12 nm in thickness were fabricated at a free water-hexane interface, followed by directly transferring them onto polydopamine (PDA) coated polymer substrates
via
vacuum filtration. This method not only efficaciously controls the nanofilm thickness, but also largely reduces the monomer content compared to a traditional IP process. Manipulation of nanofilm thickness and structure through fine-tuning the monomer concentration enables the formation of smooth, ultrathin, and robust PA layers. Composite membranes with polypiperazine amide nanofilms exhibit a high water permeance (25.1 L m
−2
h
−1
bar
−1
), and an excellent divalent salt rejection (
R
Na
2
SO
4
= 99.1%). This more than doubles the permeance of a commercial nanofiltration (NF) membrane, although the Na
2
SO
4
retention is generally below 98.5%. Importantly, the low NaCl retention endows the nanofilm composite membranes with a high mono/divalent salt selectivity (80.6). This facile, one-pot strategy provides a useful guideline for the construction of highly permeable TFC membranes for water purification.
Filtration-assisted preparation of high-performance nanofilm composite membranes used for nanofiltration with fast water transport and excellent mono/divalent salt selectivity.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ta05687k</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6832-3127</orcidid><orcidid>https://orcid.org/0000-0002-1200-715X</orcidid><orcidid>https://orcid.org/0000-0001-9139-9835</orcidid><orcidid>https://orcid.org/0000-0002-9598-9979</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (32), p.1571-1579 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_rsc_primary_c8ta05687k |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Composite materials Filtration Membranes Monomers Nanofiltration Nanotechnology Optimization Physicochemical properties Polyamide resins Polyamides Polymerization Purification Reluctance Retention Salt rejection Sodium chloride Sodium sulfate Stability Substrates Thickness Transport Vacuum Vacuum filtration Water purification Water transport Water treatment |
title | Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20water%20transport%20through%20controllable,%20ultrathin%20polyamide%20nanofilms%20for%20high-performance%20nanofiltration&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhu,%20Junyong&rft.date=2018&rft.volume=6&rft.issue=32&rft.spage=1571&rft.epage=1579&rft.pages=1571-1579&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c8ta05687k&rft_dat=%3Cproquest_rsc_p%3E2088008641%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088008641&rft_id=info:pmid/&rfr_iscdi=true |