Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry
When two liquids with different surface tensions come into contact, the liquid with lower surface tension spreads over the other liquid. This Marangoni-driven spreading has been studied for various geometries and surfactants, but the dynamics of miscible liquids in the binary geometry (drop-drop) ha...
Gespeichert in:
Veröffentlicht in: | Soft matter 2019-10, Vol.15 (42), p.8525-8531 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8531 |
---|---|
container_issue | 42 |
container_start_page | 8525 |
container_title | Soft matter |
container_volume | 15 |
creator | Koldeweij, Robin B. J van Capelleveen, Bram F Lohse, Detlef Visser, Claas Willem |
description | When two liquids with different surface tensions come into contact, the liquid with lower surface tension spreads over the other liquid. This Marangoni-driven spreading has been studied for various geometries and surfactants, but the dynamics of miscible liquids in the binary geometry (drop-drop) has hardly been investigated. Here we use stroboscopic illumination by nanosecond laser pulses to temporally resolve the distance
L
(
t
) over which a low-surface-tension drop spreads over a miscible high-surface-tension drop.
L
(
t
) is measured as a function of time,
t
, for various surface tension differences between the liquids and for various viscosities, revealing a power-law
L
(
t
) ∼
t
α
with a spreading exponent
α
0.75. This value is consistent with previous results for viscosity-limited spreading over a deep bath. The universal power law
L&cmb.tilde;
∝
t&cmb.tilde;
3/4
that describes the dimensionless distance
L&cmb.tilde;
as a function of the dimensionless time
t&cmb.tilde;
reasonably captures our experiments, as well as previous experiments for different geometries, miscibilities, and surface tension modifiers (solvents and surfactants). The range of this power law remarkably covers ten orders of magnitude in dimensionless time. This result enables engineering of drop encapsulation for various liquid-liquid systems.
The Marangoni-driven spreading dynamics of binary pendant droplets show a remarkable consistency with other geometries. A single power law describes a large array of Marangoni-driven spreading in binary liquid systems. |
doi_str_mv | 10.1039/c8sm02074d |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8sm02074d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310285520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-e5cab588304a64e1a8c5aa3d97f8999947aa2eac0b57c4f3e90ad960164c294c3</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pxbsQ8SJCNWmSNj3K_Akbgj_AW0mTdGa0SZe0wv57MycTPPgu7x0-PN77AnCM0SVGpLiSPLQoRTlVO2CEc0qTjFO-u53J-z44CGGBEOEUZyPwPBNe2LmzJlHefGoLQ-e1UMbOoatha4I0VaNhY5aDUQEaC_sPDStjhV_BTlslbA-Vdx2ca9fq3q8OwV4tmqCPfvoYvN3dvk4ekunT_ePkeppIymifaCZFxTgniIqMaiy4ZEIQVeQ1L2LRXIhUC4kqlktaE10goYoM4YzKtKCSjMH5Zm_n3XLQoS_X1-qmEVa7IZQpQSnNOMtIpGd_6MIN3sbrosIo5YylKKqLjZLeheB1XXbetPHPEqNyHW854S-z73hvIj7dYB_k1v3GX3aqjubkP0O-AGe5gpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310285520</pqid></control><display><type>article</type><title>Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Koldeweij, Robin B. J ; van Capelleveen, Bram F ; Lohse, Detlef ; Visser, Claas Willem</creator><creatorcontrib>Koldeweij, Robin B. J ; van Capelleveen, Bram F ; Lohse, Detlef ; Visser, Claas Willem</creatorcontrib><description>When two liquids with different surface tensions come into contact, the liquid with lower surface tension spreads over the other liquid. This Marangoni-driven spreading has been studied for various geometries and surfactants, but the dynamics of miscible liquids in the binary geometry (drop-drop) has hardly been investigated. Here we use stroboscopic illumination by nanosecond laser pulses to temporally resolve the distance
L
(
t
) over which a low-surface-tension drop spreads over a miscible high-surface-tension drop.
L
(
t
) is measured as a function of time,
t
, for various surface tension differences between the liquids and for various viscosities, revealing a power-law
L
(
t
) ∼
t
α
with a spreading exponent
α
0.75. This value is consistent with previous results for viscosity-limited spreading over a deep bath. The universal power law
L&cmb.tilde;
∝
t&cmb.tilde;
3/4
that describes the dimensionless distance
L&cmb.tilde;
as a function of the dimensionless time
t&cmb.tilde;
reasonably captures our experiments, as well as previous experiments for different geometries, miscibilities, and surface tension modifiers (solvents and surfactants). The range of this power law remarkably covers ten orders of magnitude in dimensionless time. This result enables engineering of drop encapsulation for various liquid-liquid systems.
The Marangoni-driven spreading dynamics of binary pendant droplets show a remarkable consistency with other geometries. A single power law describes a large array of Marangoni-driven spreading in binary liquid systems.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c8sm02074d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Liquids ; Miscibility ; Pollutants ; Power law ; Spreading ; Surface tension ; Surfactants ; Tension ; Viscosity</subject><ispartof>Soft matter, 2019-10, Vol.15 (42), p.8525-8531</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-e5cab588304a64e1a8c5aa3d97f8999947aa2eac0b57c4f3e90ad960164c294c3</citedby><cites>FETCH-LOGICAL-c454t-e5cab588304a64e1a8c5aa3d97f8999947aa2eac0b57c4f3e90ad960164c294c3</cites><orcidid>0000-0002-2843-2206 ; 0000-0001-8514-1109 ; 0000-0003-3147-2003 ; 0000-0003-4138-2255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Koldeweij, Robin B. J</creatorcontrib><creatorcontrib>van Capelleveen, Bram F</creatorcontrib><creatorcontrib>Lohse, Detlef</creatorcontrib><creatorcontrib>Visser, Claas Willem</creatorcontrib><title>Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry</title><title>Soft matter</title><description>When two liquids with different surface tensions come into contact, the liquid with lower surface tension spreads over the other liquid. This Marangoni-driven spreading has been studied for various geometries and surfactants, but the dynamics of miscible liquids in the binary geometry (drop-drop) has hardly been investigated. Here we use stroboscopic illumination by nanosecond laser pulses to temporally resolve the distance
L
(
t
) over which a low-surface-tension drop spreads over a miscible high-surface-tension drop.
L
(
t
) is measured as a function of time,
t
, for various surface tension differences between the liquids and for various viscosities, revealing a power-law
L
(
t
) ∼
t
α
with a spreading exponent
α
0.75. This value is consistent with previous results for viscosity-limited spreading over a deep bath. The universal power law
L&cmb.tilde;
∝
t&cmb.tilde;
3/4
that describes the dimensionless distance
L&cmb.tilde;
as a function of the dimensionless time
t&cmb.tilde;
reasonably captures our experiments, as well as previous experiments for different geometries, miscibilities, and surface tension modifiers (solvents and surfactants). The range of this power law remarkably covers ten orders of magnitude in dimensionless time. This result enables engineering of drop encapsulation for various liquid-liquid systems.
The Marangoni-driven spreading dynamics of binary pendant droplets show a remarkable consistency with other geometries. A single power law describes a large array of Marangoni-driven spreading in binary liquid systems.</description><subject>Liquids</subject><subject>Miscibility</subject><subject>Pollutants</subject><subject>Power law</subject><subject>Spreading</subject><subject>Surface tension</subject><subject>Surfactants</subject><subject>Tension</subject><subject>Viscosity</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgCs7pxbsQ8SJCNWmSNj3K_Akbgj_AW0mTdGa0SZe0wv57MycTPPgu7x0-PN77AnCM0SVGpLiSPLQoRTlVO2CEc0qTjFO-u53J-z44CGGBEOEUZyPwPBNe2LmzJlHefGoLQ-e1UMbOoatha4I0VaNhY5aDUQEaC_sPDStjhV_BTlslbA-Vdx2ca9fq3q8OwV4tmqCPfvoYvN3dvk4ekunT_ePkeppIymifaCZFxTgniIqMaiy4ZEIQVeQ1L2LRXIhUC4kqlktaE10goYoM4YzKtKCSjMH5Zm_n3XLQoS_X1-qmEVa7IZQpQSnNOMtIpGd_6MIN3sbrosIo5YylKKqLjZLeheB1XXbetPHPEqNyHW854S-z73hvIj7dYB_k1v3GX3aqjubkP0O-AGe5gpY</recordid><startdate>20191030</startdate><enddate>20191030</enddate><creator>Koldeweij, Robin B. J</creator><creator>van Capelleveen, Bram F</creator><creator>Lohse, Detlef</creator><creator>Visser, Claas Willem</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2843-2206</orcidid><orcidid>https://orcid.org/0000-0001-8514-1109</orcidid><orcidid>https://orcid.org/0000-0003-3147-2003</orcidid><orcidid>https://orcid.org/0000-0003-4138-2255</orcidid></search><sort><creationdate>20191030</creationdate><title>Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry</title><author>Koldeweij, Robin B. J ; van Capelleveen, Bram F ; Lohse, Detlef ; Visser, Claas Willem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-e5cab588304a64e1a8c5aa3d97f8999947aa2eac0b57c4f3e90ad960164c294c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Liquids</topic><topic>Miscibility</topic><topic>Pollutants</topic><topic>Power law</topic><topic>Spreading</topic><topic>Surface tension</topic><topic>Surfactants</topic><topic>Tension</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koldeweij, Robin B. J</creatorcontrib><creatorcontrib>van Capelleveen, Bram F</creatorcontrib><creatorcontrib>Lohse, Detlef</creatorcontrib><creatorcontrib>Visser, Claas Willem</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koldeweij, Robin B. J</au><au>van Capelleveen, Bram F</au><au>Lohse, Detlef</au><au>Visser, Claas Willem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry</atitle><jtitle>Soft matter</jtitle><date>2019-10-30</date><risdate>2019</risdate><volume>15</volume><issue>42</issue><spage>8525</spage><epage>8531</epage><pages>8525-8531</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>When two liquids with different surface tensions come into contact, the liquid with lower surface tension spreads over the other liquid. This Marangoni-driven spreading has been studied for various geometries and surfactants, but the dynamics of miscible liquids in the binary geometry (drop-drop) has hardly been investigated. Here we use stroboscopic illumination by nanosecond laser pulses to temporally resolve the distance
L
(
t
) over which a low-surface-tension drop spreads over a miscible high-surface-tension drop.
L
(
t
) is measured as a function of time,
t
, for various surface tension differences between the liquids and for various viscosities, revealing a power-law
L
(
t
) ∼
t
α
with a spreading exponent
α
0.75. This value is consistent with previous results for viscosity-limited spreading over a deep bath. The universal power law
L&cmb.tilde;
∝
t&cmb.tilde;
3/4
that describes the dimensionless distance
L&cmb.tilde;
as a function of the dimensionless time
t&cmb.tilde;
reasonably captures our experiments, as well as previous experiments for different geometries, miscibilities, and surface tension modifiers (solvents and surfactants). The range of this power law remarkably covers ten orders of magnitude in dimensionless time. This result enables engineering of drop encapsulation for various liquid-liquid systems.
The Marangoni-driven spreading dynamics of binary pendant droplets show a remarkable consistency with other geometries. A single power law describes a large array of Marangoni-driven spreading in binary liquid systems.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8sm02074d</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2843-2206</orcidid><orcidid>https://orcid.org/0000-0001-8514-1109</orcidid><orcidid>https://orcid.org/0000-0003-3147-2003</orcidid><orcidid>https://orcid.org/0000-0003-4138-2255</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2019-10, Vol.15 (42), p.8525-8531 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_rsc_primary_c8sm02074d |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Liquids Miscibility Pollutants Power law Spreading Surface tension Surfactants Tension Viscosity |
title | Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marangoni-driven%20spreading%20of%20miscible%20liquids%20in%20the%20binary%20pendant%20drop%20geometry&rft.jtitle=Soft%20matter&rft.au=Koldeweij,%20Robin%20B.%20J&rft.date=2019-10-30&rft.volume=15&rft.issue=42&rft.spage=8525&rft.epage=8531&rft.pages=8525-8531&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c8sm02074d&rft_dat=%3Cproquest_rsc_p%3E2310285520%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310285520&rft_id=info:pmid/&rfr_iscdi=true |