Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry

When two liquids with different surface tensions come into contact, the liquid with lower surface tension spreads over the other liquid. This Marangoni-driven spreading has been studied for various geometries and surfactants, but the dynamics of miscible liquids in the binary geometry (drop-drop) ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2019-10, Vol.15 (42), p.8525-8531
Hauptverfasser: Koldeweij, Robin B. J, van Capelleveen, Bram F, Lohse, Detlef, Visser, Claas Willem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8531
container_issue 42
container_start_page 8525
container_title Soft matter
container_volume 15
creator Koldeweij, Robin B. J
van Capelleveen, Bram F
Lohse, Detlef
Visser, Claas Willem
description When two liquids with different surface tensions come into contact, the liquid with lower surface tension spreads over the other liquid. This Marangoni-driven spreading has been studied for various geometries and surfactants, but the dynamics of miscible liquids in the binary geometry (drop-drop) has hardly been investigated. Here we use stroboscopic illumination by nanosecond laser pulses to temporally resolve the distance L ( t ) over which a low-surface-tension drop spreads over a miscible high-surface-tension drop. L ( t ) is measured as a function of time, t , for various surface tension differences between the liquids and for various viscosities, revealing a power-law L ( t ) ∼ t α with a spreading exponent α 0.75. This value is consistent with previous results for viscosity-limited spreading over a deep bath. The universal power law L&cmb.tilde; ∝ t&cmb.tilde; 3/4 that describes the dimensionless distance L&cmb.tilde; as a function of the dimensionless time t&cmb.tilde; reasonably captures our experiments, as well as previous experiments for different geometries, miscibilities, and surface tension modifiers (solvents and surfactants). The range of this power law remarkably covers ten orders of magnitude in dimensionless time. This result enables engineering of drop encapsulation for various liquid-liquid systems. The Marangoni-driven spreading dynamics of binary pendant droplets show a remarkable consistency with other geometries. A single power law describes a large array of Marangoni-driven spreading in binary liquid systems.
doi_str_mv 10.1039/c8sm02074d
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8sm02074d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310285520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-e5cab588304a64e1a8c5aa3d97f8999947aa2eac0b57c4f3e90ad960164c294c3</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pxbsQ8SJCNWmSNj3K_Akbgj_AW0mTdGa0SZe0wv57MycTPPgu7x0-PN77AnCM0SVGpLiSPLQoRTlVO2CEc0qTjFO-u53J-z44CGGBEOEUZyPwPBNe2LmzJlHefGoLQ-e1UMbOoatha4I0VaNhY5aDUQEaC_sPDStjhV_BTlslbA-Vdx2ca9fq3q8OwV4tmqCPfvoYvN3dvk4ekunT_ePkeppIymifaCZFxTgniIqMaiy4ZEIQVeQ1L2LRXIhUC4kqlktaE10goYoM4YzKtKCSjMH5Zm_n3XLQoS_X1-qmEVa7IZQpQSnNOMtIpGd_6MIN3sbrosIo5YylKKqLjZLeheB1XXbetPHPEqNyHW854S-z73hvIj7dYB_k1v3GX3aqjubkP0O-AGe5gpY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310285520</pqid></control><display><type>article</type><title>Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Koldeweij, Robin B. J ; van Capelleveen, Bram F ; Lohse, Detlef ; Visser, Claas Willem</creator><creatorcontrib>Koldeweij, Robin B. J ; van Capelleveen, Bram F ; Lohse, Detlef ; Visser, Claas Willem</creatorcontrib><description>When two liquids with different surface tensions come into contact, the liquid with lower surface tension spreads over the other liquid. This Marangoni-driven spreading has been studied for various geometries and surfactants, but the dynamics of miscible liquids in the binary geometry (drop-drop) has hardly been investigated. Here we use stroboscopic illumination by nanosecond laser pulses to temporally resolve the distance L ( t ) over which a low-surface-tension drop spreads over a miscible high-surface-tension drop. L ( t ) is measured as a function of time, t , for various surface tension differences between the liquids and for various viscosities, revealing a power-law L ( t ) ∼ t α with a spreading exponent α 0.75. This value is consistent with previous results for viscosity-limited spreading over a deep bath. The universal power law L&amp;cmb.tilde; ∝ t&amp;cmb.tilde; 3/4 that describes the dimensionless distance L&amp;cmb.tilde; as a function of the dimensionless time t&amp;cmb.tilde; reasonably captures our experiments, as well as previous experiments for different geometries, miscibilities, and surface tension modifiers (solvents and surfactants). The range of this power law remarkably covers ten orders of magnitude in dimensionless time. This result enables engineering of drop encapsulation for various liquid-liquid systems. The Marangoni-driven spreading dynamics of binary pendant droplets show a remarkable consistency with other geometries. A single power law describes a large array of Marangoni-driven spreading in binary liquid systems.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c8sm02074d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Liquids ; Miscibility ; Pollutants ; Power law ; Spreading ; Surface tension ; Surfactants ; Tension ; Viscosity</subject><ispartof>Soft matter, 2019-10, Vol.15 (42), p.8525-8531</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-e5cab588304a64e1a8c5aa3d97f8999947aa2eac0b57c4f3e90ad960164c294c3</citedby><cites>FETCH-LOGICAL-c454t-e5cab588304a64e1a8c5aa3d97f8999947aa2eac0b57c4f3e90ad960164c294c3</cites><orcidid>0000-0002-2843-2206 ; 0000-0001-8514-1109 ; 0000-0003-3147-2003 ; 0000-0003-4138-2255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Koldeweij, Robin B. J</creatorcontrib><creatorcontrib>van Capelleveen, Bram F</creatorcontrib><creatorcontrib>Lohse, Detlef</creatorcontrib><creatorcontrib>Visser, Claas Willem</creatorcontrib><title>Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry</title><title>Soft matter</title><description>When two liquids with different surface tensions come into contact, the liquid with lower surface tension spreads over the other liquid. This Marangoni-driven spreading has been studied for various geometries and surfactants, but the dynamics of miscible liquids in the binary geometry (drop-drop) has hardly been investigated. Here we use stroboscopic illumination by nanosecond laser pulses to temporally resolve the distance L ( t ) over which a low-surface-tension drop spreads over a miscible high-surface-tension drop. L ( t ) is measured as a function of time, t , for various surface tension differences between the liquids and for various viscosities, revealing a power-law L ( t ) ∼ t α with a spreading exponent α 0.75. This value is consistent with previous results for viscosity-limited spreading over a deep bath. The universal power law L&amp;cmb.tilde; ∝ t&amp;cmb.tilde; 3/4 that describes the dimensionless distance L&amp;cmb.tilde; as a function of the dimensionless time t&amp;cmb.tilde; reasonably captures our experiments, as well as previous experiments for different geometries, miscibilities, and surface tension modifiers (solvents and surfactants). The range of this power law remarkably covers ten orders of magnitude in dimensionless time. This result enables engineering of drop encapsulation for various liquid-liquid systems. The Marangoni-driven spreading dynamics of binary pendant droplets show a remarkable consistency with other geometries. A single power law describes a large array of Marangoni-driven spreading in binary liquid systems.</description><subject>Liquids</subject><subject>Miscibility</subject><subject>Pollutants</subject><subject>Power law</subject><subject>Spreading</subject><subject>Surface tension</subject><subject>Surfactants</subject><subject>Tension</subject><subject>Viscosity</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgCs7pxbsQ8SJCNWmSNj3K_Akbgj_AW0mTdGa0SZe0wv57MycTPPgu7x0-PN77AnCM0SVGpLiSPLQoRTlVO2CEc0qTjFO-u53J-z44CGGBEOEUZyPwPBNe2LmzJlHefGoLQ-e1UMbOoatha4I0VaNhY5aDUQEaC_sPDStjhV_BTlslbA-Vdx2ca9fq3q8OwV4tmqCPfvoYvN3dvk4ekunT_ePkeppIymifaCZFxTgniIqMaiy4ZEIQVeQ1L2LRXIhUC4kqlktaE10goYoM4YzKtKCSjMH5Zm_n3XLQoS_X1-qmEVa7IZQpQSnNOMtIpGd_6MIN3sbrosIo5YylKKqLjZLeheB1XXbetPHPEqNyHW854S-z73hvIj7dYB_k1v3GX3aqjubkP0O-AGe5gpY</recordid><startdate>20191030</startdate><enddate>20191030</enddate><creator>Koldeweij, Robin B. J</creator><creator>van Capelleveen, Bram F</creator><creator>Lohse, Detlef</creator><creator>Visser, Claas Willem</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2843-2206</orcidid><orcidid>https://orcid.org/0000-0001-8514-1109</orcidid><orcidid>https://orcid.org/0000-0003-3147-2003</orcidid><orcidid>https://orcid.org/0000-0003-4138-2255</orcidid></search><sort><creationdate>20191030</creationdate><title>Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry</title><author>Koldeweij, Robin B. J ; van Capelleveen, Bram F ; Lohse, Detlef ; Visser, Claas Willem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-e5cab588304a64e1a8c5aa3d97f8999947aa2eac0b57c4f3e90ad960164c294c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Liquids</topic><topic>Miscibility</topic><topic>Pollutants</topic><topic>Power law</topic><topic>Spreading</topic><topic>Surface tension</topic><topic>Surfactants</topic><topic>Tension</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koldeweij, Robin B. J</creatorcontrib><creatorcontrib>van Capelleveen, Bram F</creatorcontrib><creatorcontrib>Lohse, Detlef</creatorcontrib><creatorcontrib>Visser, Claas Willem</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koldeweij, Robin B. J</au><au>van Capelleveen, Bram F</au><au>Lohse, Detlef</au><au>Visser, Claas Willem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry</atitle><jtitle>Soft matter</jtitle><date>2019-10-30</date><risdate>2019</risdate><volume>15</volume><issue>42</issue><spage>8525</spage><epage>8531</epage><pages>8525-8531</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>When two liquids with different surface tensions come into contact, the liquid with lower surface tension spreads over the other liquid. This Marangoni-driven spreading has been studied for various geometries and surfactants, but the dynamics of miscible liquids in the binary geometry (drop-drop) has hardly been investigated. Here we use stroboscopic illumination by nanosecond laser pulses to temporally resolve the distance L ( t ) over which a low-surface-tension drop spreads over a miscible high-surface-tension drop. L ( t ) is measured as a function of time, t , for various surface tension differences between the liquids and for various viscosities, revealing a power-law L ( t ) ∼ t α with a spreading exponent α 0.75. This value is consistent with previous results for viscosity-limited spreading over a deep bath. The universal power law L&amp;cmb.tilde; ∝ t&amp;cmb.tilde; 3/4 that describes the dimensionless distance L&amp;cmb.tilde; as a function of the dimensionless time t&amp;cmb.tilde; reasonably captures our experiments, as well as previous experiments for different geometries, miscibilities, and surface tension modifiers (solvents and surfactants). The range of this power law remarkably covers ten orders of magnitude in dimensionless time. This result enables engineering of drop encapsulation for various liquid-liquid systems. The Marangoni-driven spreading dynamics of binary pendant droplets show a remarkable consistency with other geometries. A single power law describes a large array of Marangoni-driven spreading in binary liquid systems.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8sm02074d</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2843-2206</orcidid><orcidid>https://orcid.org/0000-0001-8514-1109</orcidid><orcidid>https://orcid.org/0000-0003-3147-2003</orcidid><orcidid>https://orcid.org/0000-0003-4138-2255</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2019-10, Vol.15 (42), p.8525-8531
issn 1744-683X
1744-6848
language eng
recordid cdi_rsc_primary_c8sm02074d
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Liquids
Miscibility
Pollutants
Power law
Spreading
Surface tension
Surfactants
Tension
Viscosity
title Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marangoni-driven%20spreading%20of%20miscible%20liquids%20in%20the%20binary%20pendant%20drop%20geometry&rft.jtitle=Soft%20matter&rft.au=Koldeweij,%20Robin%20B.%20J&rft.date=2019-10-30&rft.volume=15&rft.issue=42&rft.spage=8525&rft.epage=8531&rft.pages=8525-8531&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c8sm02074d&rft_dat=%3Cproquest_rsc_p%3E2310285520%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2310285520&rft_id=info:pmid/&rfr_iscdi=true