An unusual double chain-initiating nonribosomal peptide synthetase assembles 'fungal' icosalide antibiotics

Burkholderia is a multi-talented genus of Gram-negative bacteria, which in recent years has become increasingly recognised as a promising source of bioactive natural products. Metabolite profiling of Burkholderia gladioli BCC0238 showed that it produces the asymmetric lipopeptidiolide antibiotic ico...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2019-05, Vol.1 (21), p.5489-5494
Hauptverfasser: Jenner, Matthew, Jian, Xinyun, Dashti, Yousef, Masschelein, Joleen, Hobson, Christian, Roberts, Douglas M, Jones, Cerith, Harris, Simon, Parkhill, Julian, Raja, Huzefa A, Oberlies, Nicholas H, Pearce, Cedric J, Mahenthiralingam, Eshwar, Challis, Gregory L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5494
container_issue 21
container_start_page 5489
container_title Chemical science (Cambridge)
container_volume 1
creator Jenner, Matthew
Jian, Xinyun
Dashti, Yousef
Masschelein, Joleen
Hobson, Christian
Roberts, Douglas M
Jones, Cerith
Harris, Simon
Parkhill, Julian
Raja, Huzefa A
Oberlies, Nicholas H
Pearce, Cedric J
Mahenthiralingam, Eshwar
Challis, Gregory L
description Burkholderia is a multi-talented genus of Gram-negative bacteria, which in recent years has become increasingly recognised as a promising source of bioactive natural products. Metabolite profiling of Burkholderia gladioli BCC0238 showed that it produces the asymmetric lipopeptidiolide antibiotic icosalide A1, originally isolated from a fungus. Comparative bioinformatics analysis of several genome-sequenced B. gladioli isolates identified a gene encoding a nonribosomal peptide synthase (NRPS) with an unusual architecture that was predicted to be responsible for icosalide biosynthesis. Inactivation of this gene in B. gladioli BCC0238 abolished icosalide production. PCR analysis and sequencing of total DNA from the original fungal icosalide A1 producer revealed it has a B. gladioli strain associated with it that harbours an NRPS with an identical architecture to that responsible for icosalide A1 assembly in B. gladioli BCC0238. Sequence analysis of the icosalide NRPS indicated that it contains two chain-initiating condensation (C I ) domains. One of these is appended to the N-terminus of module 1 - a common architecture for NRPSs involved in lipopeptide assembly. The other is embedded in module 3, immediately downstream of a putative chain-elongating condensation domain. Analysis of the reactions catalysed by a tridomain construct from module 3 of the NRPS using intact protein mass spectrometry showed that the embedded C I domain initiates assembly of a second lipopeptide chain, providing key insights into the mechanism for asymmetric diolide assembly. Fungus-associated Burkholderia gladioli bacteria use a unique 'dual-priming' nonribosomal peptide synthetase to assemble icosalide A1.
doi_str_mv 10.1039/c8sc04897e
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c8sc04897e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c8sc04897e</sourcerecordid><originalsourceid>FETCH-rsc_primary_c8sc04897e3</originalsourceid><addsrcrecordid>eNqFjzFvwjAUhK2qSEVtFvZKZmJK68RQyIgQFT-ge_TiOPDAeY7y7IF_T5AQbPSWO-m7G06ISaa-MqWLb7Nio-arYmlfxDhX8yz9Weji9Z5z9SYS5qMapHW2yJdjcVqTjBQ5gpO1j5Wz0hwAKUXCgBCQ9pI89Vh59u1Q6mwXsLaSzxQONgBbCcy2HZYsZ02kPbiZROMZ3LUHFLBCH9Dwhxg14NgmN38Xn7_bv80u7dmUXY8t9OfycUL_z6fPeNnVjb4A1HpYTw</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An unusual double chain-initiating nonribosomal peptide synthetase assembles 'fungal' icosalide antibiotics</title><source>PubMed (Medline)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Jenner, Matthew ; Jian, Xinyun ; Dashti, Yousef ; Masschelein, Joleen ; Hobson, Christian ; Roberts, Douglas M ; Jones, Cerith ; Harris, Simon ; Parkhill, Julian ; Raja, Huzefa A ; Oberlies, Nicholas H ; Pearce, Cedric J ; Mahenthiralingam, Eshwar ; Challis, Gregory L</creator><creatorcontrib>Jenner, Matthew ; Jian, Xinyun ; Dashti, Yousef ; Masschelein, Joleen ; Hobson, Christian ; Roberts, Douglas M ; Jones, Cerith ; Harris, Simon ; Parkhill, Julian ; Raja, Huzefa A ; Oberlies, Nicholas H ; Pearce, Cedric J ; Mahenthiralingam, Eshwar ; Challis, Gregory L</creatorcontrib><description>Burkholderia is a multi-talented genus of Gram-negative bacteria, which in recent years has become increasingly recognised as a promising source of bioactive natural products. Metabolite profiling of Burkholderia gladioli BCC0238 showed that it produces the asymmetric lipopeptidiolide antibiotic icosalide A1, originally isolated from a fungus. Comparative bioinformatics analysis of several genome-sequenced B. gladioli isolates identified a gene encoding a nonribosomal peptide synthase (NRPS) with an unusual architecture that was predicted to be responsible for icosalide biosynthesis. Inactivation of this gene in B. gladioli BCC0238 abolished icosalide production. PCR analysis and sequencing of total DNA from the original fungal icosalide A1 producer revealed it has a B. gladioli strain associated with it that harbours an NRPS with an identical architecture to that responsible for icosalide A1 assembly in B. gladioli BCC0238. Sequence analysis of the icosalide NRPS indicated that it contains two chain-initiating condensation (C I ) domains. One of these is appended to the N-terminus of module 1 - a common architecture for NRPSs involved in lipopeptide assembly. The other is embedded in module 3, immediately downstream of a putative chain-elongating condensation domain. Analysis of the reactions catalysed by a tridomain construct from module 3 of the NRPS using intact protein mass spectrometry showed that the embedded C I domain initiates assembly of a second lipopeptide chain, providing key insights into the mechanism for asymmetric diolide assembly. Fungus-associated Burkholderia gladioli bacteria use a unique 'dual-priming' nonribosomal peptide synthetase to assemble icosalide A1.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c8sc04897e</identifier><language>eng</language><ispartof>Chemical science (Cambridge), 2019-05, Vol.1 (21), p.5489-5494</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Jenner, Matthew</creatorcontrib><creatorcontrib>Jian, Xinyun</creatorcontrib><creatorcontrib>Dashti, Yousef</creatorcontrib><creatorcontrib>Masschelein, Joleen</creatorcontrib><creatorcontrib>Hobson, Christian</creatorcontrib><creatorcontrib>Roberts, Douglas M</creatorcontrib><creatorcontrib>Jones, Cerith</creatorcontrib><creatorcontrib>Harris, Simon</creatorcontrib><creatorcontrib>Parkhill, Julian</creatorcontrib><creatorcontrib>Raja, Huzefa A</creatorcontrib><creatorcontrib>Oberlies, Nicholas H</creatorcontrib><creatorcontrib>Pearce, Cedric J</creatorcontrib><creatorcontrib>Mahenthiralingam, Eshwar</creatorcontrib><creatorcontrib>Challis, Gregory L</creatorcontrib><title>An unusual double chain-initiating nonribosomal peptide synthetase assembles 'fungal' icosalide antibiotics</title><title>Chemical science (Cambridge)</title><description>Burkholderia is a multi-talented genus of Gram-negative bacteria, which in recent years has become increasingly recognised as a promising source of bioactive natural products. Metabolite profiling of Burkholderia gladioli BCC0238 showed that it produces the asymmetric lipopeptidiolide antibiotic icosalide A1, originally isolated from a fungus. Comparative bioinformatics analysis of several genome-sequenced B. gladioli isolates identified a gene encoding a nonribosomal peptide synthase (NRPS) with an unusual architecture that was predicted to be responsible for icosalide biosynthesis. Inactivation of this gene in B. gladioli BCC0238 abolished icosalide production. PCR analysis and sequencing of total DNA from the original fungal icosalide A1 producer revealed it has a B. gladioli strain associated with it that harbours an NRPS with an identical architecture to that responsible for icosalide A1 assembly in B. gladioli BCC0238. Sequence analysis of the icosalide NRPS indicated that it contains two chain-initiating condensation (C I ) domains. One of these is appended to the N-terminus of module 1 - a common architecture for NRPSs involved in lipopeptide assembly. The other is embedded in module 3, immediately downstream of a putative chain-elongating condensation domain. Analysis of the reactions catalysed by a tridomain construct from module 3 of the NRPS using intact protein mass spectrometry showed that the embedded C I domain initiates assembly of a second lipopeptide chain, providing key insights into the mechanism for asymmetric diolide assembly. Fungus-associated Burkholderia gladioli bacteria use a unique 'dual-priming' nonribosomal peptide synthetase to assemble icosalide A1.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjzFvwjAUhK2qSEVtFvZKZmJK68RQyIgQFT-ge_TiOPDAeY7y7IF_T5AQbPSWO-m7G06ISaa-MqWLb7Nio-arYmlfxDhX8yz9Weji9Z5z9SYS5qMapHW2yJdjcVqTjBQ5gpO1j5Wz0hwAKUXCgBCQ9pI89Vh59u1Q6mwXsLaSzxQONgBbCcy2HZYsZ02kPbiZROMZ3LUHFLBCH9Dwhxg14NgmN38Xn7_bv80u7dmUXY8t9OfycUL_z6fPeNnVjb4A1HpYTw</recordid><startdate>20190529</startdate><enddate>20190529</enddate><creator>Jenner, Matthew</creator><creator>Jian, Xinyun</creator><creator>Dashti, Yousef</creator><creator>Masschelein, Joleen</creator><creator>Hobson, Christian</creator><creator>Roberts, Douglas M</creator><creator>Jones, Cerith</creator><creator>Harris, Simon</creator><creator>Parkhill, Julian</creator><creator>Raja, Huzefa A</creator><creator>Oberlies, Nicholas H</creator><creator>Pearce, Cedric J</creator><creator>Mahenthiralingam, Eshwar</creator><creator>Challis, Gregory L</creator><scope/></search><sort><creationdate>20190529</creationdate><title>An unusual double chain-initiating nonribosomal peptide synthetase assembles 'fungal' icosalide antibiotics</title><author>Jenner, Matthew ; Jian, Xinyun ; Dashti, Yousef ; Masschelein, Joleen ; Hobson, Christian ; Roberts, Douglas M ; Jones, Cerith ; Harris, Simon ; Parkhill, Julian ; Raja, Huzefa A ; Oberlies, Nicholas H ; Pearce, Cedric J ; Mahenthiralingam, Eshwar ; Challis, Gregory L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c8sc04897e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Jenner, Matthew</creatorcontrib><creatorcontrib>Jian, Xinyun</creatorcontrib><creatorcontrib>Dashti, Yousef</creatorcontrib><creatorcontrib>Masschelein, Joleen</creatorcontrib><creatorcontrib>Hobson, Christian</creatorcontrib><creatorcontrib>Roberts, Douglas M</creatorcontrib><creatorcontrib>Jones, Cerith</creatorcontrib><creatorcontrib>Harris, Simon</creatorcontrib><creatorcontrib>Parkhill, Julian</creatorcontrib><creatorcontrib>Raja, Huzefa A</creatorcontrib><creatorcontrib>Oberlies, Nicholas H</creatorcontrib><creatorcontrib>Pearce, Cedric J</creatorcontrib><creatorcontrib>Mahenthiralingam, Eshwar</creatorcontrib><creatorcontrib>Challis, Gregory L</creatorcontrib><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jenner, Matthew</au><au>Jian, Xinyun</au><au>Dashti, Yousef</au><au>Masschelein, Joleen</au><au>Hobson, Christian</au><au>Roberts, Douglas M</au><au>Jones, Cerith</au><au>Harris, Simon</au><au>Parkhill, Julian</au><au>Raja, Huzefa A</au><au>Oberlies, Nicholas H</au><au>Pearce, Cedric J</au><au>Mahenthiralingam, Eshwar</au><au>Challis, Gregory L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An unusual double chain-initiating nonribosomal peptide synthetase assembles 'fungal' icosalide antibiotics</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2019-05-29</date><risdate>2019</risdate><volume>1</volume><issue>21</issue><spage>5489</spage><epage>5494</epage><pages>5489-5494</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Burkholderia is a multi-talented genus of Gram-negative bacteria, which in recent years has become increasingly recognised as a promising source of bioactive natural products. Metabolite profiling of Burkholderia gladioli BCC0238 showed that it produces the asymmetric lipopeptidiolide antibiotic icosalide A1, originally isolated from a fungus. Comparative bioinformatics analysis of several genome-sequenced B. gladioli isolates identified a gene encoding a nonribosomal peptide synthase (NRPS) with an unusual architecture that was predicted to be responsible for icosalide biosynthesis. Inactivation of this gene in B. gladioli BCC0238 abolished icosalide production. PCR analysis and sequencing of total DNA from the original fungal icosalide A1 producer revealed it has a B. gladioli strain associated with it that harbours an NRPS with an identical architecture to that responsible for icosalide A1 assembly in B. gladioli BCC0238. Sequence analysis of the icosalide NRPS indicated that it contains two chain-initiating condensation (C I ) domains. One of these is appended to the N-terminus of module 1 - a common architecture for NRPSs involved in lipopeptide assembly. The other is embedded in module 3, immediately downstream of a putative chain-elongating condensation domain. Analysis of the reactions catalysed by a tridomain construct from module 3 of the NRPS using intact protein mass spectrometry showed that the embedded C I domain initiates assembly of a second lipopeptide chain, providing key insights into the mechanism for asymmetric diolide assembly. Fungus-associated Burkholderia gladioli bacteria use a unique 'dual-priming' nonribosomal peptide synthetase to assemble icosalide A1.</abstract><doi>10.1039/c8sc04897e</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2019-05, Vol.1 (21), p.5489-5494
issn 2041-6520
2041-6539
language eng
recordid cdi_rsc_primary_c8sc04897e
source PubMed (Medline); DOAJ Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access
title An unusual double chain-initiating nonribosomal peptide synthetase assembles 'fungal' icosalide antibiotics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T07%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20unusual%20double%20chain-initiating%20nonribosomal%20peptide%20synthetase%20assembles%20'fungal'%20icosalide%20antibiotics&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Jenner,%20Matthew&rft.date=2019-05-29&rft.volume=1&rft.issue=21&rft.spage=5489&rft.epage=5494&rft.pages=5489-5494&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c8sc04897e&rft_dat=%3Crsc%3Ec8sc04897e%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true