A graph-convolutional neural network model for the prediction of chemical reactivity
We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s). The prediction task is factored into two stages comparable to manual expert approaches: considering possible sites of reactivity and evaluating their relative likel...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2019-01, Vol.1 (2), p.37-377 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 377 |
---|---|
container_issue | 2 |
container_start_page | 37 |
container_title | Chemical science (Cambridge) |
container_volume | 1 |
creator | Coley, Connor W Jin, Wengong Rogers, Luke Jamison, Timothy F Jaakkola, Tommi S Green, William H Barzilay, Regina Jensen, Klavs F |
description | We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s). The prediction task is factored into two stages comparable to manual expert approaches: considering possible sites of reactivity and evaluating their relative likelihoods. By training on hundreds of thousands of reaction precedents covering a broad range of reaction types from the patent literature, the neural model makes informed predictions of chemical reactivity. The model predicts the major product correctly over 85% of the time requiring around 100 ms per example, a significantly higher accuracy than achieved by previous machine learning approaches, and performs on par with expert chemists with years of formal training. We gain additional insight into predictions
via
the design of the neural model, revealing an understanding of chemistry qualitatively consistent with manual approaches.
We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s). |
doi_str_mv | 10.1039/c8sc04228d |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8sc04228d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229084342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-1b2790ea4f70f567b75902b9f9eb72db2c434d80a53f1683bbeb9ef74be85ad83</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2KqiC6l95BkbhUSCkTfyTOpRJaPloJiQPL2bKdMRtI4q2dbMV_j5elS9u5zGjmp6eneYR8KeBbAaw-szJa4JTK5gM5oMCLvBSs3tvNFPbJLMZHSMVYIWj1iewzqHgJsjwgi_PsIejVMrd-WPtuGls_6C4bcAqvbfztw1PW-wa7zPmQjUvMVgGb1m7IzLvMLrFvbYID6rRct-PzZ_LR6S7i7K0fkvury8X8R35ze_1zfn6TW8HEmBeGVjWg5q4CJ8rKVKIGampXo6loY6jljDcStGCuKCUzBk2NruIGpdCNZIfk-1Z3NZkeG4vDmFyrVWh7HZ6V16369zK0S_Xg16pkTEi-Efj6JhD8rwnjqPo2Wuw6PaCfoqKU1iCTC5rQk__QRz-F9KtEFSWVwIBDok63lA0-xoBuZ6YAtclLzeXd_DWviwQf_21_h_5JJwFHWyBEu7u-B85eAOwKm1I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162803040</pqid></control><display><type>article</type><title>A graph-convolutional neural network model for the prediction of chemical reactivity</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Coley, Connor W ; Jin, Wengong ; Rogers, Luke ; Jamison, Timothy F ; Jaakkola, Tommi S ; Green, William H ; Barzilay, Regina ; Jensen, Klavs F</creator><creatorcontrib>Coley, Connor W ; Jin, Wengong ; Rogers, Luke ; Jamison, Timothy F ; Jaakkola, Tommi S ; Green, William H ; Barzilay, Regina ; Jensen, Klavs F</creatorcontrib><description>We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s). The prediction task is factored into two stages comparable to manual expert approaches: considering possible sites of reactivity and evaluating their relative likelihoods. By training on hundreds of thousands of reaction precedents covering a broad range of reaction types from the patent literature, the neural model makes informed predictions of chemical reactivity. The model predicts the major product correctly over 85% of the time requiring around 100 ms per example, a significantly higher accuracy than achieved by previous machine learning approaches, and performs on par with expert chemists with years of formal training. We gain additional insight into predictions
via
the design of the neural model, revealing an understanding of chemistry qualitatively consistent with manual approaches.
We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s).</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c8sc04228d</identifier><identifier>PMID: 30746086</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Artificial neural networks ; Chemical reactions ; Chemistry ; Chemists ; Machine learning ; Mathematical models ; Organic chemistry ; Reactivity ; Reagents ; Training</subject><ispartof>Chemical science (Cambridge), 2019-01, Vol.1 (2), p.37-377</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-1b2790ea4f70f567b75902b9f9eb72db2c434d80a53f1683bbeb9ef74be85ad83</citedby><cites>FETCH-LOGICAL-c535t-1b2790ea4f70f567b75902b9f9eb72db2c434d80a53f1683bbeb9ef74be85ad83</cites><orcidid>0000-0003-2603-9694 ; 0000-0002-8601-7799 ; 0000-0002-8271-8723 ; 0000-0001-7192-580X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335848/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335848/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30746086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coley, Connor W</creatorcontrib><creatorcontrib>Jin, Wengong</creatorcontrib><creatorcontrib>Rogers, Luke</creatorcontrib><creatorcontrib>Jamison, Timothy F</creatorcontrib><creatorcontrib>Jaakkola, Tommi S</creatorcontrib><creatorcontrib>Green, William H</creatorcontrib><creatorcontrib>Barzilay, Regina</creatorcontrib><creatorcontrib>Jensen, Klavs F</creatorcontrib><title>A graph-convolutional neural network model for the prediction of chemical reactivity</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s). The prediction task is factored into two stages comparable to manual expert approaches: considering possible sites of reactivity and evaluating their relative likelihoods. By training on hundreds of thousands of reaction precedents covering a broad range of reaction types from the patent literature, the neural model makes informed predictions of chemical reactivity. The model predicts the major product correctly over 85% of the time requiring around 100 ms per example, a significantly higher accuracy than achieved by previous machine learning approaches, and performs on par with expert chemists with years of formal training. We gain additional insight into predictions
via
the design of the neural model, revealing an understanding of chemistry qualitatively consistent with manual approaches.
We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s).</description><subject>Artificial neural networks</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemists</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Organic chemistry</subject><subject>Reactivity</subject><subject>Reagents</subject><subject>Training</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1P3DAQxa2KqiC6l95BkbhUSCkTfyTOpRJaPloJiQPL2bKdMRtI4q2dbMV_j5elS9u5zGjmp6eneYR8KeBbAaw-szJa4JTK5gM5oMCLvBSs3tvNFPbJLMZHSMVYIWj1iewzqHgJsjwgi_PsIejVMrd-WPtuGls_6C4bcAqvbfztw1PW-wa7zPmQjUvMVgGb1m7IzLvMLrFvbYID6rRct-PzZ_LR6S7i7K0fkvury8X8R35ze_1zfn6TW8HEmBeGVjWg5q4CJ8rKVKIGampXo6loY6jljDcStGCuKCUzBk2NruIGpdCNZIfk-1Z3NZkeG4vDmFyrVWh7HZ6V16369zK0S_Xg16pkTEi-Efj6JhD8rwnjqPo2Wuw6PaCfoqKU1iCTC5rQk__QRz-F9KtEFSWVwIBDok63lA0-xoBuZ6YAtclLzeXd_DWviwQf_21_h_5JJwFHWyBEu7u-B85eAOwKm1I</recordid><startdate>20190114</startdate><enddate>20190114</enddate><creator>Coley, Connor W</creator><creator>Jin, Wengong</creator><creator>Rogers, Luke</creator><creator>Jamison, Timothy F</creator><creator>Jaakkola, Tommi S</creator><creator>Green, William H</creator><creator>Barzilay, Regina</creator><creator>Jensen, Klavs F</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid><orcidid>https://orcid.org/0000-0002-8601-7799</orcidid><orcidid>https://orcid.org/0000-0002-8271-8723</orcidid><orcidid>https://orcid.org/0000-0001-7192-580X</orcidid></search><sort><creationdate>20190114</creationdate><title>A graph-convolutional neural network model for the prediction of chemical reactivity</title><author>Coley, Connor W ; Jin, Wengong ; Rogers, Luke ; Jamison, Timothy F ; Jaakkola, Tommi S ; Green, William H ; Barzilay, Regina ; Jensen, Klavs F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-1b2790ea4f70f567b75902b9f9eb72db2c434d80a53f1683bbeb9ef74be85ad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemists</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Organic chemistry</topic><topic>Reactivity</topic><topic>Reagents</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coley, Connor W</creatorcontrib><creatorcontrib>Jin, Wengong</creatorcontrib><creatorcontrib>Rogers, Luke</creatorcontrib><creatorcontrib>Jamison, Timothy F</creatorcontrib><creatorcontrib>Jaakkola, Tommi S</creatorcontrib><creatorcontrib>Green, William H</creatorcontrib><creatorcontrib>Barzilay, Regina</creatorcontrib><creatorcontrib>Jensen, Klavs F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coley, Connor W</au><au>Jin, Wengong</au><au>Rogers, Luke</au><au>Jamison, Timothy F</au><au>Jaakkola, Tommi S</au><au>Green, William H</au><au>Barzilay, Regina</au><au>Jensen, Klavs F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A graph-convolutional neural network model for the prediction of chemical reactivity</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2019-01-14</date><risdate>2019</risdate><volume>1</volume><issue>2</issue><spage>37</spage><epage>377</epage><pages>37-377</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s). The prediction task is factored into two stages comparable to manual expert approaches: considering possible sites of reactivity and evaluating their relative likelihoods. By training on hundreds of thousands of reaction precedents covering a broad range of reaction types from the patent literature, the neural model makes informed predictions of chemical reactivity. The model predicts the major product correctly over 85% of the time requiring around 100 ms per example, a significantly higher accuracy than achieved by previous machine learning approaches, and performs on par with expert chemists with years of formal training. We gain additional insight into predictions
via
the design of the neural model, revealing an understanding of chemistry qualitatively consistent with manual approaches.
We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s).</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30746086</pmid><doi>10.1039/c8sc04228d</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid><orcidid>https://orcid.org/0000-0002-8601-7799</orcidid><orcidid>https://orcid.org/0000-0002-8271-8723</orcidid><orcidid>https://orcid.org/0000-0001-7192-580X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2019-01, Vol.1 (2), p.37-377 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_rsc_primary_c8sc04228d |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Artificial neural networks Chemical reactions Chemistry Chemists Machine learning Mathematical models Organic chemistry Reactivity Reagents Training |
title | A graph-convolutional neural network model for the prediction of chemical reactivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20graph-convolutional%20neural%20network%20model%20for%20the%20prediction%20of%20chemical%20reactivity&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Coley,%20Connor%20W&rft.date=2019-01-14&rft.volume=1&rft.issue=2&rft.spage=37&rft.epage=377&rft.pages=37-377&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c8sc04228d&rft_dat=%3Cproquest_rsc_p%3E2229084342%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162803040&rft_id=info:pmid/30746086&rfr_iscdi=true |