A graph-convolutional neural network model for the prediction of chemical reactivity

We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s). The prediction task is factored into two stages comparable to manual expert approaches: considering possible sites of reactivity and evaluating their relative likel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2019-01, Vol.1 (2), p.37-377
Hauptverfasser: Coley, Connor W, Jin, Wengong, Rogers, Luke, Jamison, Timothy F, Jaakkola, Tommi S, Green, William H, Barzilay, Regina, Jensen, Klavs F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 377
container_issue 2
container_start_page 37
container_title Chemical science (Cambridge)
container_volume 1
creator Coley, Connor W
Jin, Wengong
Rogers, Luke
Jamison, Timothy F
Jaakkola, Tommi S
Green, William H
Barzilay, Regina
Jensen, Klavs F
description We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s). The prediction task is factored into two stages comparable to manual expert approaches: considering possible sites of reactivity and evaluating their relative likelihoods. By training on hundreds of thousands of reaction precedents covering a broad range of reaction types from the patent literature, the neural model makes informed predictions of chemical reactivity. The model predicts the major product correctly over 85% of the time requiring around 100 ms per example, a significantly higher accuracy than achieved by previous machine learning approaches, and performs on par with expert chemists with years of formal training. We gain additional insight into predictions via the design of the neural model, revealing an understanding of chemistry qualitatively consistent with manual approaches. We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s).
doi_str_mv 10.1039/c8sc04228d
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8sc04228d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229084342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-1b2790ea4f70f567b75902b9f9eb72db2c434d80a53f1683bbeb9ef74be85ad83</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2KqiC6l95BkbhUSCkTfyTOpRJaPloJiQPL2bKdMRtI4q2dbMV_j5elS9u5zGjmp6eneYR8KeBbAaw-szJa4JTK5gM5oMCLvBSs3tvNFPbJLMZHSMVYIWj1iewzqHgJsjwgi_PsIejVMrd-WPtuGls_6C4bcAqvbfztw1PW-wa7zPmQjUvMVgGb1m7IzLvMLrFvbYID6rRct-PzZ_LR6S7i7K0fkvury8X8R35ze_1zfn6TW8HEmBeGVjWg5q4CJ8rKVKIGampXo6loY6jljDcStGCuKCUzBk2NruIGpdCNZIfk-1Z3NZkeG4vDmFyrVWh7HZ6V16369zK0S_Xg16pkTEi-Efj6JhD8rwnjqPo2Wuw6PaCfoqKU1iCTC5rQk__QRz-F9KtEFSWVwIBDok63lA0-xoBuZ6YAtclLzeXd_DWviwQf_21_h_5JJwFHWyBEu7u-B85eAOwKm1I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162803040</pqid></control><display><type>article</type><title>A graph-convolutional neural network model for the prediction of chemical reactivity</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Coley, Connor W ; Jin, Wengong ; Rogers, Luke ; Jamison, Timothy F ; Jaakkola, Tommi S ; Green, William H ; Barzilay, Regina ; Jensen, Klavs F</creator><creatorcontrib>Coley, Connor W ; Jin, Wengong ; Rogers, Luke ; Jamison, Timothy F ; Jaakkola, Tommi S ; Green, William H ; Barzilay, Regina ; Jensen, Klavs F</creatorcontrib><description>We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s). The prediction task is factored into two stages comparable to manual expert approaches: considering possible sites of reactivity and evaluating their relative likelihoods. By training on hundreds of thousands of reaction precedents covering a broad range of reaction types from the patent literature, the neural model makes informed predictions of chemical reactivity. The model predicts the major product correctly over 85% of the time requiring around 100 ms per example, a significantly higher accuracy than achieved by previous machine learning approaches, and performs on par with expert chemists with years of formal training. We gain additional insight into predictions via the design of the neural model, revealing an understanding of chemistry qualitatively consistent with manual approaches. We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s).</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c8sc04228d</identifier><identifier>PMID: 30746086</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Artificial neural networks ; Chemical reactions ; Chemistry ; Chemists ; Machine learning ; Mathematical models ; Organic chemistry ; Reactivity ; Reagents ; Training</subject><ispartof>Chemical science (Cambridge), 2019-01, Vol.1 (2), p.37-377</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-1b2790ea4f70f567b75902b9f9eb72db2c434d80a53f1683bbeb9ef74be85ad83</citedby><cites>FETCH-LOGICAL-c535t-1b2790ea4f70f567b75902b9f9eb72db2c434d80a53f1683bbeb9ef74be85ad83</cites><orcidid>0000-0003-2603-9694 ; 0000-0002-8601-7799 ; 0000-0002-8271-8723 ; 0000-0001-7192-580X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335848/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335848/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30746086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coley, Connor W</creatorcontrib><creatorcontrib>Jin, Wengong</creatorcontrib><creatorcontrib>Rogers, Luke</creatorcontrib><creatorcontrib>Jamison, Timothy F</creatorcontrib><creatorcontrib>Jaakkola, Tommi S</creatorcontrib><creatorcontrib>Green, William H</creatorcontrib><creatorcontrib>Barzilay, Regina</creatorcontrib><creatorcontrib>Jensen, Klavs F</creatorcontrib><title>A graph-convolutional neural network model for the prediction of chemical reactivity</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s). The prediction task is factored into two stages comparable to manual expert approaches: considering possible sites of reactivity and evaluating their relative likelihoods. By training on hundreds of thousands of reaction precedents covering a broad range of reaction types from the patent literature, the neural model makes informed predictions of chemical reactivity. The model predicts the major product correctly over 85% of the time requiring around 100 ms per example, a significantly higher accuracy than achieved by previous machine learning approaches, and performs on par with expert chemists with years of formal training. We gain additional insight into predictions via the design of the neural model, revealing an understanding of chemistry qualitatively consistent with manual approaches. We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s).</description><subject>Artificial neural networks</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemists</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Organic chemistry</subject><subject>Reactivity</subject><subject>Reagents</subject><subject>Training</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkc1P3DAQxa2KqiC6l95BkbhUSCkTfyTOpRJaPloJiQPL2bKdMRtI4q2dbMV_j5elS9u5zGjmp6eneYR8KeBbAaw-szJa4JTK5gM5oMCLvBSs3tvNFPbJLMZHSMVYIWj1iewzqHgJsjwgi_PsIejVMrd-WPtuGls_6C4bcAqvbfztw1PW-wa7zPmQjUvMVgGb1m7IzLvMLrFvbYID6rRct-PzZ_LR6S7i7K0fkvury8X8R35ze_1zfn6TW8HEmBeGVjWg5q4CJ8rKVKIGampXo6loY6jljDcStGCuKCUzBk2NruIGpdCNZIfk-1Z3NZkeG4vDmFyrVWh7HZ6V16369zK0S_Xg16pkTEi-Efj6JhD8rwnjqPo2Wuw6PaCfoqKU1iCTC5rQk__QRz-F9KtEFSWVwIBDok63lA0-xoBuZ6YAtclLzeXd_DWviwQf_21_h_5JJwFHWyBEu7u-B85eAOwKm1I</recordid><startdate>20190114</startdate><enddate>20190114</enddate><creator>Coley, Connor W</creator><creator>Jin, Wengong</creator><creator>Rogers, Luke</creator><creator>Jamison, Timothy F</creator><creator>Jaakkola, Tommi S</creator><creator>Green, William H</creator><creator>Barzilay, Regina</creator><creator>Jensen, Klavs F</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid><orcidid>https://orcid.org/0000-0002-8601-7799</orcidid><orcidid>https://orcid.org/0000-0002-8271-8723</orcidid><orcidid>https://orcid.org/0000-0001-7192-580X</orcidid></search><sort><creationdate>20190114</creationdate><title>A graph-convolutional neural network model for the prediction of chemical reactivity</title><author>Coley, Connor W ; Jin, Wengong ; Rogers, Luke ; Jamison, Timothy F ; Jaakkola, Tommi S ; Green, William H ; Barzilay, Regina ; Jensen, Klavs F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-1b2790ea4f70f567b75902b9f9eb72db2c434d80a53f1683bbeb9ef74be85ad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemists</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Organic chemistry</topic><topic>Reactivity</topic><topic>Reagents</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coley, Connor W</creatorcontrib><creatorcontrib>Jin, Wengong</creatorcontrib><creatorcontrib>Rogers, Luke</creatorcontrib><creatorcontrib>Jamison, Timothy F</creatorcontrib><creatorcontrib>Jaakkola, Tommi S</creatorcontrib><creatorcontrib>Green, William H</creatorcontrib><creatorcontrib>Barzilay, Regina</creatorcontrib><creatorcontrib>Jensen, Klavs F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coley, Connor W</au><au>Jin, Wengong</au><au>Rogers, Luke</au><au>Jamison, Timothy F</au><au>Jaakkola, Tommi S</au><au>Green, William H</au><au>Barzilay, Regina</au><au>Jensen, Klavs F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A graph-convolutional neural network model for the prediction of chemical reactivity</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2019-01-14</date><risdate>2019</risdate><volume>1</volume><issue>2</issue><spage>37</spage><epage>377</epage><pages>37-377</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s). The prediction task is factored into two stages comparable to manual expert approaches: considering possible sites of reactivity and evaluating their relative likelihoods. By training on hundreds of thousands of reaction precedents covering a broad range of reaction types from the patent literature, the neural model makes informed predictions of chemical reactivity. The model predicts the major product correctly over 85% of the time requiring around 100 ms per example, a significantly higher accuracy than achieved by previous machine learning approaches, and performs on par with expert chemists with years of formal training. We gain additional insight into predictions via the design of the neural model, revealing an understanding of chemistry qualitatively consistent with manual approaches. We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s).</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30746086</pmid><doi>10.1039/c8sc04228d</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid><orcidid>https://orcid.org/0000-0002-8601-7799</orcidid><orcidid>https://orcid.org/0000-0002-8271-8723</orcidid><orcidid>https://orcid.org/0000-0001-7192-580X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2019-01, Vol.1 (2), p.37-377
issn 2041-6520
2041-6539
language eng
recordid cdi_rsc_primary_c8sc04228d
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Artificial neural networks
Chemical reactions
Chemistry
Chemists
Machine learning
Mathematical models
Organic chemistry
Reactivity
Reagents
Training
title A graph-convolutional neural network model for the prediction of chemical reactivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20graph-convolutional%20neural%20network%20model%20for%20the%20prediction%20of%20chemical%20reactivity&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Coley,%20Connor%20W&rft.date=2019-01-14&rft.volume=1&rft.issue=2&rft.spage=37&rft.epage=377&rft.pages=37-377&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c8sc04228d&rft_dat=%3Cproquest_rsc_p%3E2229084342%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162803040&rft_id=info:pmid/30746086&rfr_iscdi=true