Non-monotonous size-dependent photoluminescence and excitonic relaxations in nanostructured ZnO thin films
The size dependence of room-temperature photoluminescence (PL) accompanied with near-band-edge emission (NBE) and defect-associated green emission (GE) was investigated using high-quality crystalline nanostructured ZnO thin films with grain sizes varying from 29 nm to 2 nm. The size dependence of co...
Gespeichert in:
Veröffentlicht in: | RSC advances 2019-01, Vol.9 (4), p.218-2188 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2188 |
---|---|
container_issue | 4 |
container_start_page | 218 |
container_title | RSC advances |
container_volume | 9 |
creator | Gandhi, Ashish C Liao, Ching-Hao Yeh, Wei-Li Huang, Yue-Lin |
description | The size dependence of room-temperature photoluminescence (PL) accompanied with near-band-edge emission (NBE) and defect-associated green emission (GE) was investigated using high-quality crystalline nanostructured ZnO thin films with grain sizes varying from 29 nm to 2 nm. The size dependence of correlated intensities of the PL bands was pursued in correlation with structural and defect evolution revealed by X-ray photoelectron spectroscopy (XPS) and previous studies of XRD and Raman scattering. In contrast to the influence of thermally activated reconstruction and changes in defect densities, quantum size effects emerging at grain sizes below a critical value,
i.e.
,
d
c
∼ 10 nm were inspected in relation to the observed blueshift in the bandgap and correlated variations in the size dependence of the intensity of NBE and GE. Taking into account the geometry-modelled relative emission efficiency, (i) the observed overall linear size dependence of the relative intensity
I
NBE
/
I
GE
was consistent with assuming a 1.05 nm-thick GE-active surface layer, and (ii) a local maximum of
I
NBE
/
I
GE
emerging near grain radius
R
4 nm was identified in relation to the theoretically predicted local minimum in size-dependent exciton radiative lifetime due to the intrinsic quantum nature of excitons confined in ZnO. Our results have provided new insights into non-monotonous size-dependent PL of ZnO, which can benefit future photoelectronic device design by taking advantage of the size-controlled stability of confined excitons in nanostructured thin films and luminescent quantum dots.
To comprehensively understand the behaviors of the near-band-edge emission and green emission (NBE, GE), the volume-weighting (VW) model is adapted to take into account a dead layer of confined excitons. |
doi_str_mv | 10.1039/c8ra09370a |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8ra09370a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2168840490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-d3608f2c4327122c15946918197b8011d3e8d5e58674398f80c7b4b5ae7a916a3</originalsourceid><addsrcrecordid>eNpdkt1rFDEUxYMottS--K4EfJHCaL4neRGWxapQLIi--BKymTtulplkTTJS_euNbl2rgZBLzo_LuTlB6DElLyjh5qXX2RHDe-LuoVNGhOoYUeb-nfoEnZeyI20pSZmiD9EJl5IqKtgp2r1PsZtTTLXtpeASfkA3wB7iALHi_bYJ0zKHCMVD9IBdHDDc-ND44HGGyd24GlIsOEQcXUyl5sXXJcOAP8drXLftfgzTXB6hB6ObCpzfnmfo0-Xrj-u33dX1m3fr1VXnBdO1G7giemRecNZTxjyVRihDNTX9RhNKBw56kCC16gU3etTE9xuxkQ56Z6hy_Ay9OvTdL5sZhma7ZjfZfQ6zy99tcsH-q8SwtV_SN2uINJrJ1uD5bYOcvi5Qqp1Dm36aXIT2RpYpRYkWipuGPvsP3aUlxzaeZVRpLYgwpFEXB8rnVEqG8WiGEvsrRbvWH1a_U1w1-Old-0f0T2YNeHIAcvFH9e834D8BoiWi7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168840490</pqid></control><display><type>article</type><title>Non-monotonous size-dependent photoluminescence and excitonic relaxations in nanostructured ZnO thin films</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Gandhi, Ashish C ; Liao, Ching-Hao ; Yeh, Wei-Li ; Huang, Yue-Lin</creator><creatorcontrib>Gandhi, Ashish C ; Liao, Ching-Hao ; Yeh, Wei-Li ; Huang, Yue-Lin</creatorcontrib><description>The size dependence of room-temperature photoluminescence (PL) accompanied with near-band-edge emission (NBE) and defect-associated green emission (GE) was investigated using high-quality crystalline nanostructured ZnO thin films with grain sizes varying from 29 nm to 2 nm. The size dependence of correlated intensities of the PL bands was pursued in correlation with structural and defect evolution revealed by X-ray photoelectron spectroscopy (XPS) and previous studies of XRD and Raman scattering. In contrast to the influence of thermally activated reconstruction and changes in defect densities, quantum size effects emerging at grain sizes below a critical value,
i.e.
,
d
c
∼ 10 nm were inspected in relation to the observed blueshift in the bandgap and correlated variations in the size dependence of the intensity of NBE and GE. Taking into account the geometry-modelled relative emission efficiency, (i) the observed overall linear size dependence of the relative intensity
I
NBE
/
I
GE
was consistent with assuming a 1.05 nm-thick GE-active surface layer, and (ii) a local maximum of
I
NBE
/
I
GE
emerging near grain radius
R
4 nm was identified in relation to the theoretically predicted local minimum in size-dependent exciton radiative lifetime due to the intrinsic quantum nature of excitons confined in ZnO. Our results have provided new insights into non-monotonous size-dependent PL of ZnO, which can benefit future photoelectronic device design by taking advantage of the size-controlled stability of confined excitons in nanostructured thin films and luminescent quantum dots.
To comprehensively understand the behaviors of the near-band-edge emission and green emission (NBE, GE), the volume-weighting (VW) model is adapted to take into account a dead layer of confined excitons.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c8ra09370a</identifier><identifier>PMID: 35516142</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Banded structure ; Chemistry ; Control stability ; Correlation ; Defects ; Emission analysis ; Excitons ; Nanostructure ; Photoelectrons ; Photoluminescence ; Quantum dots ; Radiative lifetime ; Raman spectra ; Size effects ; Surface layers ; Temperature dependence ; Thin films ; X ray photoelectron spectroscopy ; Zinc oxide</subject><ispartof>RSC advances, 2019-01, Vol.9 (4), p.218-2188</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><rights>This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-d3608f2c4327122c15946918197b8011d3e8d5e58674398f80c7b4b5ae7a916a3</citedby><cites>FETCH-LOGICAL-c428t-d3608f2c4327122c15946918197b8011d3e8d5e58674398f80c7b4b5ae7a916a3</cites><orcidid>0000-0002-1900-8702 ; 0000-0003-0293-7326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059825/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059825/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35516142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gandhi, Ashish C</creatorcontrib><creatorcontrib>Liao, Ching-Hao</creatorcontrib><creatorcontrib>Yeh, Wei-Li</creatorcontrib><creatorcontrib>Huang, Yue-Lin</creatorcontrib><title>Non-monotonous size-dependent photoluminescence and excitonic relaxations in nanostructured ZnO thin films</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>The size dependence of room-temperature photoluminescence (PL) accompanied with near-band-edge emission (NBE) and defect-associated green emission (GE) was investigated using high-quality crystalline nanostructured ZnO thin films with grain sizes varying from 29 nm to 2 nm. The size dependence of correlated intensities of the PL bands was pursued in correlation with structural and defect evolution revealed by X-ray photoelectron spectroscopy (XPS) and previous studies of XRD and Raman scattering. In contrast to the influence of thermally activated reconstruction and changes in defect densities, quantum size effects emerging at grain sizes below a critical value,
i.e.
,
d
c
∼ 10 nm were inspected in relation to the observed blueshift in the bandgap and correlated variations in the size dependence of the intensity of NBE and GE. Taking into account the geometry-modelled relative emission efficiency, (i) the observed overall linear size dependence of the relative intensity
I
NBE
/
I
GE
was consistent with assuming a 1.05 nm-thick GE-active surface layer, and (ii) a local maximum of
I
NBE
/
I
GE
emerging near grain radius
R
4 nm was identified in relation to the theoretically predicted local minimum in size-dependent exciton radiative lifetime due to the intrinsic quantum nature of excitons confined in ZnO. Our results have provided new insights into non-monotonous size-dependent PL of ZnO, which can benefit future photoelectronic device design by taking advantage of the size-controlled stability of confined excitons in nanostructured thin films and luminescent quantum dots.
To comprehensively understand the behaviors of the near-band-edge emission and green emission (NBE, GE), the volume-weighting (VW) model is adapted to take into account a dead layer of confined excitons.</description><subject>Banded structure</subject><subject>Chemistry</subject><subject>Control stability</subject><subject>Correlation</subject><subject>Defects</subject><subject>Emission analysis</subject><subject>Excitons</subject><subject>Nanostructure</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Quantum dots</subject><subject>Radiative lifetime</subject><subject>Raman spectra</subject><subject>Size effects</subject><subject>Surface layers</subject><subject>Temperature dependence</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zinc oxide</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkt1rFDEUxYMottS--K4EfJHCaL4neRGWxapQLIi--BKymTtulplkTTJS_euNbl2rgZBLzo_LuTlB6DElLyjh5qXX2RHDe-LuoVNGhOoYUeb-nfoEnZeyI20pSZmiD9EJl5IqKtgp2r1PsZtTTLXtpeASfkA3wB7iALHi_bYJ0zKHCMVD9IBdHDDc-ND44HGGyd24GlIsOEQcXUyl5sXXJcOAP8drXLftfgzTXB6hB6ObCpzfnmfo0-Xrj-u33dX1m3fr1VXnBdO1G7giemRecNZTxjyVRihDNTX9RhNKBw56kCC16gU3etTE9xuxkQ56Z6hy_Ay9OvTdL5sZhma7ZjfZfQ6zy99tcsH-q8SwtV_SN2uINJrJ1uD5bYOcvi5Qqp1Dm36aXIT2RpYpRYkWipuGPvsP3aUlxzaeZVRpLYgwpFEXB8rnVEqG8WiGEvsrRbvWH1a_U1w1-Old-0f0T2YNeHIAcvFH9e834D8BoiWi7Q</recordid><startdate>20190117</startdate><enddate>20190117</enddate><creator>Gandhi, Ashish C</creator><creator>Liao, Ching-Hao</creator><creator>Yeh, Wei-Li</creator><creator>Huang, Yue-Lin</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1900-8702</orcidid><orcidid>https://orcid.org/0000-0003-0293-7326</orcidid></search><sort><creationdate>20190117</creationdate><title>Non-monotonous size-dependent photoluminescence and excitonic relaxations in nanostructured ZnO thin films</title><author>Gandhi, Ashish C ; Liao, Ching-Hao ; Yeh, Wei-Li ; Huang, Yue-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-d3608f2c4327122c15946918197b8011d3e8d5e58674398f80c7b4b5ae7a916a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Banded structure</topic><topic>Chemistry</topic><topic>Control stability</topic><topic>Correlation</topic><topic>Defects</topic><topic>Emission analysis</topic><topic>Excitons</topic><topic>Nanostructure</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Quantum dots</topic><topic>Radiative lifetime</topic><topic>Raman spectra</topic><topic>Size effects</topic><topic>Surface layers</topic><topic>Temperature dependence</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gandhi, Ashish C</creatorcontrib><creatorcontrib>Liao, Ching-Hao</creatorcontrib><creatorcontrib>Yeh, Wei-Li</creatorcontrib><creatorcontrib>Huang, Yue-Lin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gandhi, Ashish C</au><au>Liao, Ching-Hao</au><au>Yeh, Wei-Li</au><au>Huang, Yue-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-monotonous size-dependent photoluminescence and excitonic relaxations in nanostructured ZnO thin films</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2019-01-17</date><risdate>2019</risdate><volume>9</volume><issue>4</issue><spage>218</spage><epage>2188</epage><pages>218-2188</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>The size dependence of room-temperature photoluminescence (PL) accompanied with near-band-edge emission (NBE) and defect-associated green emission (GE) was investigated using high-quality crystalline nanostructured ZnO thin films with grain sizes varying from 29 nm to 2 nm. The size dependence of correlated intensities of the PL bands was pursued in correlation with structural and defect evolution revealed by X-ray photoelectron spectroscopy (XPS) and previous studies of XRD and Raman scattering. In contrast to the influence of thermally activated reconstruction and changes in defect densities, quantum size effects emerging at grain sizes below a critical value,
i.e.
,
d
c
∼ 10 nm were inspected in relation to the observed blueshift in the bandgap and correlated variations in the size dependence of the intensity of NBE and GE. Taking into account the geometry-modelled relative emission efficiency, (i) the observed overall linear size dependence of the relative intensity
I
NBE
/
I
GE
was consistent with assuming a 1.05 nm-thick GE-active surface layer, and (ii) a local maximum of
I
NBE
/
I
GE
emerging near grain radius
R
4 nm was identified in relation to the theoretically predicted local minimum in size-dependent exciton radiative lifetime due to the intrinsic quantum nature of excitons confined in ZnO. Our results have provided new insights into non-monotonous size-dependent PL of ZnO, which can benefit future photoelectronic device design by taking advantage of the size-controlled stability of confined excitons in nanostructured thin films and luminescent quantum dots.
To comprehensively understand the behaviors of the near-band-edge emission and green emission (NBE, GE), the volume-weighting (VW) model is adapted to take into account a dead layer of confined excitons.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35516142</pmid><doi>10.1039/c8ra09370a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1900-8702</orcidid><orcidid>https://orcid.org/0000-0003-0293-7326</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2019-01, Vol.9 (4), p.218-2188 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_rsc_primary_c8ra09370a |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Banded structure Chemistry Control stability Correlation Defects Emission analysis Excitons Nanostructure Photoelectrons Photoluminescence Quantum dots Radiative lifetime Raman spectra Size effects Surface layers Temperature dependence Thin films X ray photoelectron spectroscopy Zinc oxide |
title | Non-monotonous size-dependent photoluminescence and excitonic relaxations in nanostructured ZnO thin films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-monotonous%20size-dependent%20photoluminescence%20and%20excitonic%20relaxations%20in%20nanostructured%20ZnO%20thin%20films&rft.jtitle=RSC%20advances&rft.au=Gandhi,%20Ashish%20C&rft.date=2019-01-17&rft.volume=9&rft.issue=4&rft.spage=218&rft.epage=2188&rft.pages=218-2188&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c8ra09370a&rft_dat=%3Cproquest_rsc_p%3E2168840490%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168840490&rft_id=info:pmid/35516142&rfr_iscdi=true |