Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor
In this study, two-dimensional (2D), quasi-three-dimensional (3D), and 3D plasmonic photonic crystal (PPC) nanostructures with point-defect cavities were developed and fabricated using direct and reversal nanoimprint lithography. As a result of the hybrid coupling of localized surface plasmon resona...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2018-11, Vol.1 (42), p.19927-19936 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19936 |
---|---|
container_issue | 42 |
container_start_page | 19927 |
container_title | Nanoscale |
container_volume | 1 |
creator | Zhu, Shuyan Li, Hualin Yang, Mengsu Pang, Stella W |
description | In this study, two-dimensional (2D), quasi-three-dimensional (3D), and 3D plasmonic photonic crystal (PPC) nanostructures with point-defect cavities were developed and fabricated using direct and reversal nanoimprint lithography. As a result of the hybrid coupling of localized surface plasmon resonance and Fabry-Perot cavity modes, the quasi-3D plasmonic nanoholes showed higher electromagnetic field intensity and sensitivity than the 2D plasmonic nanoholes. Specifically, the sensitivity of the quasi-3D plasmonic nanoholes was 483 nm per refractive index unit (RIU), whereas that of the 2D plasmonic nanoholes was 276 nm RIU
−1
. In addition, by enhancing electromagnetic field intensity around corners and generating an additional subradiant dark mode, the symmetrical breakage of the quasi-3D plasmonic nanoholes further increased the sensitivity to 946 nm RIU
−1
. Among all the nanostructures developed in the study, the 3D PPC nanostructures with point-defect cavities showed the highest sensitivity up to 1376 nm RIU
−1
and highest figure of merit of 11.6 as the result of the hybrid coupling of plasmonics and photonic crystal modes with multilayered plasmonic nanostructures. The spacing between the 3D PPC nanostructures was comparable with the average size of exosomes derived from fibroblast L cells, which allowed the exosomes to spread around the 3D PPC nanostructures with increased sensing area. This effect further enhanced the detection sensitivity with a large peak shift of 9 nm when using the 3D PPC biosensor to detect exosomes at the concentration of 1 × 10
4
particles per ml, and the peak shift increased to 102 nm as exosome concentration increased to 1 × 10
11
particles per ml.
The first investigation of 3D plasmonic photonic crystal nanostructures with point-defect cavities and their application in quantitative exosome detection. |
doi_str_mv | 10.1039/c8nr07051b |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8nr07051b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127676464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-25477049719383f83b8129d16fca556e0830e81d15e74cb2d6694d0254def0023</originalsourceid><addsrcrecordid>eNpFkE1PwzAMhiMEYmNw4Q6KxA2p4MRp0h5hfAxpAoHgXLVpyjq1zUg6RP893QfjZFt-_Fp6CDllcMUA42sdNQ4UhCzbI0MOAgJExfd3vRQDcuT9HEDGKPGQDBBQyH4cktdJ-TmrOupN48u2_DY0N63RbWkbagtqfqy3tfE06yje0UWV-to2paaLmW3XjXadb9OKZqVdZVh3TA6KtPLmZFtH5OPh_n08CaYvj0_jm2mgBWAb8FAoBSJWLMYIiwiziPE4Z7LQaRhKAxGCiVjOQqOEznguZSxy6M9yUwBwHJGLTe7C2a-l8W0yt0vX9C8TzriSSgopeupyQ2lnvXemSBaurFPXJQySlb1kHD2_re3d9vD5NnKZ1SbfoX-6euBsAzivd9t__fgLh-Zy3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127676464</pqid></control><display><type>article</type><title>Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhu, Shuyan ; Li, Hualin ; Yang, Mengsu ; Pang, Stella W</creator><creatorcontrib>Zhu, Shuyan ; Li, Hualin ; Yang, Mengsu ; Pang, Stella W</creatorcontrib><description>In this study, two-dimensional (2D), quasi-three-dimensional (3D), and 3D plasmonic photonic crystal (PPC) nanostructures with point-defect cavities were developed and fabricated using direct and reversal nanoimprint lithography. As a result of the hybrid coupling of localized surface plasmon resonance and Fabry-Perot cavity modes, the quasi-3D plasmonic nanoholes showed higher electromagnetic field intensity and sensitivity than the 2D plasmonic nanoholes. Specifically, the sensitivity of the quasi-3D plasmonic nanoholes was 483 nm per refractive index unit (RIU), whereas that of the 2D plasmonic nanoholes was 276 nm RIU
−1
. In addition, by enhancing electromagnetic field intensity around corners and generating an additional subradiant dark mode, the symmetrical breakage of the quasi-3D plasmonic nanoholes further increased the sensitivity to 946 nm RIU
−1
. Among all the nanostructures developed in the study, the 3D PPC nanostructures with point-defect cavities showed the highest sensitivity up to 1376 nm RIU
−1
and highest figure of merit of 11.6 as the result of the hybrid coupling of plasmonics and photonic crystal modes with multilayered plasmonic nanostructures. The spacing between the 3D PPC nanostructures was comparable with the average size of exosomes derived from fibroblast L cells, which allowed the exosomes to spread around the 3D PPC nanostructures with increased sensing area. This effect further enhanced the detection sensitivity with a large peak shift of 9 nm when using the 3D PPC biosensor to detect exosomes at the concentration of 1 × 10
4
particles per ml, and the peak shift increased to 102 nm as exosome concentration increased to 1 × 10
11
particles per ml.
The first investigation of 3D plasmonic photonic crystal nanostructures with point-defect cavities and their application in quantitative exosome detection.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr07051b</identifier><identifier>PMID: 30346006</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Antibodies - immunology ; Biosensing Techniques ; Biosensors ; Breakage ; Cell Line ; Coupling ; Crystal defects ; Electromagnetic fields ; Electromagnetism ; Epithelial Cell Adhesion Molecule - immunology ; Exosomes - chemistry ; Exosomes - immunology ; Exosomes - metabolism ; Figure of merit ; Gold - chemistry ; Holes ; Mice ; Nanopores ; Nanostructure ; Nanostructures - chemistry ; Nanotechnology ; Photonic crystals ; Photons ; Plasmonics ; Refractivity ; Refractometry ; Sensitivity enhancement ; Sulfhydryl Compounds - chemistry</subject><ispartof>Nanoscale, 2018-11, Vol.1 (42), p.19927-19936</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-25477049719383f83b8129d16fca556e0830e81d15e74cb2d6694d0254def0023</citedby><cites>FETCH-LOGICAL-c403t-25477049719383f83b8129d16fca556e0830e81d15e74cb2d6694d0254def0023</cites><orcidid>0000-0002-4330-0877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30346006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Shuyan</creatorcontrib><creatorcontrib>Li, Hualin</creatorcontrib><creatorcontrib>Yang, Mengsu</creatorcontrib><creatorcontrib>Pang, Stella W</creatorcontrib><title>Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>In this study, two-dimensional (2D), quasi-three-dimensional (3D), and 3D plasmonic photonic crystal (PPC) nanostructures with point-defect cavities were developed and fabricated using direct and reversal nanoimprint lithography. As a result of the hybrid coupling of localized surface plasmon resonance and Fabry-Perot cavity modes, the quasi-3D plasmonic nanoholes showed higher electromagnetic field intensity and sensitivity than the 2D plasmonic nanoholes. Specifically, the sensitivity of the quasi-3D plasmonic nanoholes was 483 nm per refractive index unit (RIU), whereas that of the 2D plasmonic nanoholes was 276 nm RIU
−1
. In addition, by enhancing electromagnetic field intensity around corners and generating an additional subradiant dark mode, the symmetrical breakage of the quasi-3D plasmonic nanoholes further increased the sensitivity to 946 nm RIU
−1
. Among all the nanostructures developed in the study, the 3D PPC nanostructures with point-defect cavities showed the highest sensitivity up to 1376 nm RIU
−1
and highest figure of merit of 11.6 as the result of the hybrid coupling of plasmonics and photonic crystal modes with multilayered plasmonic nanostructures. The spacing between the 3D PPC nanostructures was comparable with the average size of exosomes derived from fibroblast L cells, which allowed the exosomes to spread around the 3D PPC nanostructures with increased sensing area. This effect further enhanced the detection sensitivity with a large peak shift of 9 nm when using the 3D PPC biosensor to detect exosomes at the concentration of 1 × 10
4
particles per ml, and the peak shift increased to 102 nm as exosome concentration increased to 1 × 10
11
particles per ml.
The first investigation of 3D plasmonic photonic crystal nanostructures with point-defect cavities and their application in quantitative exosome detection.</description><subject>Animals</subject><subject>Antibodies - immunology</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Breakage</subject><subject>Cell Line</subject><subject>Coupling</subject><subject>Crystal defects</subject><subject>Electromagnetic fields</subject><subject>Electromagnetism</subject><subject>Epithelial Cell Adhesion Molecule - immunology</subject><subject>Exosomes - chemistry</subject><subject>Exosomes - immunology</subject><subject>Exosomes - metabolism</subject><subject>Figure of merit</subject><subject>Gold - chemistry</subject><subject>Holes</subject><subject>Mice</subject><subject>Nanopores</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Photonic crystals</subject><subject>Photons</subject><subject>Plasmonics</subject><subject>Refractivity</subject><subject>Refractometry</subject><subject>Sensitivity enhancement</subject><subject>Sulfhydryl Compounds - chemistry</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1PwzAMhiMEYmNw4Q6KxA2p4MRp0h5hfAxpAoHgXLVpyjq1zUg6RP893QfjZFt-_Fp6CDllcMUA42sdNQ4UhCzbI0MOAgJExfd3vRQDcuT9HEDGKPGQDBBQyH4cktdJ-TmrOupN48u2_DY0N63RbWkbagtqfqy3tfE06yje0UWV-to2paaLmW3XjXadb9OKZqVdZVh3TA6KtPLmZFtH5OPh_n08CaYvj0_jm2mgBWAb8FAoBSJWLMYIiwiziPE4Z7LQaRhKAxGCiVjOQqOEznguZSxy6M9yUwBwHJGLTe7C2a-l8W0yt0vX9C8TzriSSgopeupyQ2lnvXemSBaurFPXJQySlb1kHD2_re3d9vD5NnKZ1SbfoX-6euBsAzivd9t__fgLh-Zy3A</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Zhu, Shuyan</creator><creator>Li, Hualin</creator><creator>Yang, Mengsu</creator><creator>Pang, Stella W</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4330-0877</orcidid></search><sort><creationdate>20181101</creationdate><title>Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor</title><author>Zhu, Shuyan ; Li, Hualin ; Yang, Mengsu ; Pang, Stella W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-25477049719383f83b8129d16fca556e0830e81d15e74cb2d6694d0254def0023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Antibodies - immunology</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Breakage</topic><topic>Cell Line</topic><topic>Coupling</topic><topic>Crystal defects</topic><topic>Electromagnetic fields</topic><topic>Electromagnetism</topic><topic>Epithelial Cell Adhesion Molecule - immunology</topic><topic>Exosomes - chemistry</topic><topic>Exosomes - immunology</topic><topic>Exosomes - metabolism</topic><topic>Figure of merit</topic><topic>Gold - chemistry</topic><topic>Holes</topic><topic>Mice</topic><topic>Nanopores</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Photonic crystals</topic><topic>Photons</topic><topic>Plasmonics</topic><topic>Refractivity</topic><topic>Refractometry</topic><topic>Sensitivity enhancement</topic><topic>Sulfhydryl Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Shuyan</creatorcontrib><creatorcontrib>Li, Hualin</creatorcontrib><creatorcontrib>Yang, Mengsu</creatorcontrib><creatorcontrib>Pang, Stella W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Shuyan</au><au>Li, Hualin</au><au>Yang, Mengsu</au><au>Pang, Stella W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>1</volume><issue>42</issue><spage>19927</spage><epage>19936</epage><pages>19927-19936</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>In this study, two-dimensional (2D), quasi-three-dimensional (3D), and 3D plasmonic photonic crystal (PPC) nanostructures with point-defect cavities were developed and fabricated using direct and reversal nanoimprint lithography. As a result of the hybrid coupling of localized surface plasmon resonance and Fabry-Perot cavity modes, the quasi-3D plasmonic nanoholes showed higher electromagnetic field intensity and sensitivity than the 2D plasmonic nanoholes. Specifically, the sensitivity of the quasi-3D plasmonic nanoholes was 483 nm per refractive index unit (RIU), whereas that of the 2D plasmonic nanoholes was 276 nm RIU
−1
. In addition, by enhancing electromagnetic field intensity around corners and generating an additional subradiant dark mode, the symmetrical breakage of the quasi-3D plasmonic nanoholes further increased the sensitivity to 946 nm RIU
−1
. Among all the nanostructures developed in the study, the 3D PPC nanostructures with point-defect cavities showed the highest sensitivity up to 1376 nm RIU
−1
and highest figure of merit of 11.6 as the result of the hybrid coupling of plasmonics and photonic crystal modes with multilayered plasmonic nanostructures. The spacing between the 3D PPC nanostructures was comparable with the average size of exosomes derived from fibroblast L cells, which allowed the exosomes to spread around the 3D PPC nanostructures with increased sensing area. This effect further enhanced the detection sensitivity with a large peak shift of 9 nm when using the 3D PPC biosensor to detect exosomes at the concentration of 1 × 10
4
particles per ml, and the peak shift increased to 102 nm as exosome concentration increased to 1 × 10
11
particles per ml.
The first investigation of 3D plasmonic photonic crystal nanostructures with point-defect cavities and their application in quantitative exosome detection.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30346006</pmid><doi>10.1039/c8nr07051b</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4330-0877</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2018-11, Vol.1 (42), p.19927-19936 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_rsc_primary_c8nr07051b |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | Animals Antibodies - immunology Biosensing Techniques Biosensors Breakage Cell Line Coupling Crystal defects Electromagnetic fields Electromagnetism Epithelial Cell Adhesion Molecule - immunology Exosomes - chemistry Exosomes - immunology Exosomes - metabolism Figure of merit Gold - chemistry Holes Mice Nanopores Nanostructure Nanostructures - chemistry Nanotechnology Photonic crystals Photons Plasmonics Refractivity Refractometry Sensitivity enhancement Sulfhydryl Compounds - chemistry |
title | Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20sensitive%20detection%20of%20exosomes%20by%203D%20plasmonic%20photonic%20crystal%20biosensor&rft.jtitle=Nanoscale&rft.au=Zhu,%20Shuyan&rft.date=2018-11-01&rft.volume=1&rft.issue=42&rft.spage=19927&rft.epage=19936&rft.pages=19927-19936&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr07051b&rft_dat=%3Cproquest_rsc_p%3E2127676464%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127676464&rft_id=info:pmid/30346006&rfr_iscdi=true |