Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors

Two-dimensional (2D) MXenes have a very good application prospect in the field of electrochemical energy storage due to their metallic conductivity, high volumetric capacity, mechanical and thermal stability. Herein, we report the preparation of titanium carbide (Ti 3 C 2 T x )/carbon nanotube (CNT)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-01, Vol.1 (13), p.596-5913
Hauptverfasser: Yu, Peng, Cao, Gejin, Yi, Sha, Zhang, Xiong, Li, Chen, Sun, Xianzhong, Wang, Kai, Ma, Yanwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5913
container_issue 13
container_start_page 596
container_title Nanoscale
container_volume 1
creator Yu, Peng
Cao, Gejin
Yi, Sha
Zhang, Xiong
Li, Chen
Sun, Xianzhong
Wang, Kai
Ma, Yanwei
description Two-dimensional (2D) MXenes have a very good application prospect in the field of electrochemical energy storage due to their metallic conductivity, high volumetric capacity, mechanical and thermal stability. Herein, we report the preparation of titanium carbide (Ti 3 C 2 T x )/carbon nanotube (CNT) flexible self-supporting composite films by vacuum filtration. The CNTs can effectively prevent Ti 3 C 2 T x from stacking and improve the electrochemical performance. The as-fabricated Ti 3 C 2 T x /CNT film shows a high reversible capacity of 489 mA h g −1 at a current density of 50 mA g −1 together with good cycling performance. The full-cell lithium-ion capacitor (LIC) is assembled using the Ti 3 C 2 T x /CNT film as the anode and activated carbon as the cathode. The LIC exhibits a high energy density of 67 Wh kg −1 (based on the total weight of the anode and the cathode), and a good capacity retention of 81.3% after 5000 cycles. These results suggest that Ti 3 C 2 T x -CNT films are promising as anode materials for lithium ion capacitors. A full-cell lithium-ion capacitor is assembled using a Ti 3 C 2 T x /CNT film as the anode and activated carbon as the cathode.
doi_str_mv 10.1039/c8nr00380g
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8nr00380g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019520883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-71c5de113da07c568eb8f6a0f0b4f0e1017afaabe31c770b0ec3e9ca88e18ae43</originalsourceid><addsrcrecordid>eNp9kc1L9DAQxoO84vflvb8S8bIK1UnTbdOjrp_gB4iCt5KmEzeyTWrSHvzvzbq6gof3NDM8v3kY5iHkL4MjBrw8VsJ6AC7gZYVspJBBwnmR_ln2ebZONkN4BchLnvM1sp6WY15AxjeIPTW2QZ9oj0jTM9qbXloztFRJX5sG6ej2GS0eHM9nZ6mV1vVDjVS5tnPB9Biodp5Ozcs06dDHvpVWIZ2Zfhp9EhOXlOykMr3zYZusajkLuPNVt8jTxfnj5Cq5ub-8npzcJCqDtE8KpsYNMsYbCYUa5wJroXMJGupMAzJghdRS1siZKgqoARXHUkkhkAmJGd8io4Vv593bgKGvWhMUzmbSohtClQLjhRBQsoju_0Jf3eBtvG5OleMUhOCROlxQyrsQPOqq86aV_r1iUM1TqCbi7uEzhcsI735ZDnWLzRL9fnsE_i0AH9RS_Ykx6nv_06uu0fwD8v-Ycg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019520883</pqid></control><display><type>article</type><title>Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yu, Peng ; Cao, Gejin ; Yi, Sha ; Zhang, Xiong ; Li, Chen ; Sun, Xianzhong ; Wang, Kai ; Ma, Yanwei</creator><creatorcontrib>Yu, Peng ; Cao, Gejin ; Yi, Sha ; Zhang, Xiong ; Li, Chen ; Sun, Xianzhong ; Wang, Kai ; Ma, Yanwei</creatorcontrib><description>Two-dimensional (2D) MXenes have a very good application prospect in the field of electrochemical energy storage due to their metallic conductivity, high volumetric capacity, mechanical and thermal stability. Herein, we report the preparation of titanium carbide (Ti 3 C 2 T x )/carbon nanotube (CNT) flexible self-supporting composite films by vacuum filtration. The CNTs can effectively prevent Ti 3 C 2 T x from stacking and improve the electrochemical performance. The as-fabricated Ti 3 C 2 T x /CNT film shows a high reversible capacity of 489 mA h g −1 at a current density of 50 mA g −1 together with good cycling performance. The full-cell lithium-ion capacitor (LIC) is assembled using the Ti 3 C 2 T x /CNT film as the anode and activated carbon as the cathode. The LIC exhibits a high energy density of 67 Wh kg −1 (based on the total weight of the anode and the cathode), and a good capacity retention of 81.3% after 5000 cycles. These results suggest that Ti 3 C 2 T x -CNT films are promising as anode materials for lithium ion capacitors. A full-cell lithium-ion capacitor is assembled using a Ti 3 C 2 T x /CNT film as the anode and activated carbon as the cathode.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr00380g</identifier><identifier>PMID: 29537043</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Activated carbon ; Anodes ; Capacitors ; Carbon ; Carbon nanotubes ; Cathodes ; Electrochemical analysis ; Electrode materials ; Energy storage ; Flux density ; Lithium ; Lithium ions ; MXenes ; Nanotubes ; Thermal stability ; Titanium carbide ; Vacuum filtration</subject><ispartof>Nanoscale, 2018-01, Vol.1 (13), p.596-5913</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-71c5de113da07c568eb8f6a0f0b4f0e1017afaabe31c770b0ec3e9ca88e18ae43</citedby><cites>FETCH-LOGICAL-c402t-71c5de113da07c568eb8f6a0f0b4f0e1017afaabe31c770b0ec3e9ca88e18ae43</cites><orcidid>0000-0002-7131-0888 ; 0000-0002-0947-585X ; 0000-0002-6632-8653 ; 0000-0002-1014-7714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29537043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Peng</creatorcontrib><creatorcontrib>Cao, Gejin</creatorcontrib><creatorcontrib>Yi, Sha</creatorcontrib><creatorcontrib>Zhang, Xiong</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Sun, Xianzhong</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Ma, Yanwei</creatorcontrib><title>Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Two-dimensional (2D) MXenes have a very good application prospect in the field of electrochemical energy storage due to their metallic conductivity, high volumetric capacity, mechanical and thermal stability. Herein, we report the preparation of titanium carbide (Ti 3 C 2 T x )/carbon nanotube (CNT) flexible self-supporting composite films by vacuum filtration. The CNTs can effectively prevent Ti 3 C 2 T x from stacking and improve the electrochemical performance. The as-fabricated Ti 3 C 2 T x /CNT film shows a high reversible capacity of 489 mA h g −1 at a current density of 50 mA g −1 together with good cycling performance. The full-cell lithium-ion capacitor (LIC) is assembled using the Ti 3 C 2 T x /CNT film as the anode and activated carbon as the cathode. The LIC exhibits a high energy density of 67 Wh kg −1 (based on the total weight of the anode and the cathode), and a good capacity retention of 81.3% after 5000 cycles. These results suggest that Ti 3 C 2 T x -CNT films are promising as anode materials for lithium ion capacitors. A full-cell lithium-ion capacitor is assembled using a Ti 3 C 2 T x /CNT film as the anode and activated carbon as the cathode.</description><subject>Activated carbon</subject><subject>Anodes</subject><subject>Capacitors</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Cathodes</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>MXenes</subject><subject>Nanotubes</subject><subject>Thermal stability</subject><subject>Titanium carbide</subject><subject>Vacuum filtration</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1L9DAQxoO84vflvb8S8bIK1UnTbdOjrp_gB4iCt5KmEzeyTWrSHvzvzbq6gof3NDM8v3kY5iHkL4MjBrw8VsJ6AC7gZYVspJBBwnmR_ln2ebZONkN4BchLnvM1sp6WY15AxjeIPTW2QZ9oj0jTM9qbXloztFRJX5sG6ej2GS0eHM9nZ6mV1vVDjVS5tnPB9Biodp5Ozcs06dDHvpVWIZ2Zfhp9EhOXlOykMr3zYZusajkLuPNVt8jTxfnj5Cq5ub-8npzcJCqDtE8KpsYNMsYbCYUa5wJroXMJGupMAzJghdRS1siZKgqoARXHUkkhkAmJGd8io4Vv593bgKGvWhMUzmbSohtClQLjhRBQsoju_0Jf3eBtvG5OleMUhOCROlxQyrsQPOqq86aV_r1iUM1TqCbi7uEzhcsI735ZDnWLzRL9fnsE_i0AH9RS_Ykx6nv_06uu0fwD8v-Ycg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Yu, Peng</creator><creator>Cao, Gejin</creator><creator>Yi, Sha</creator><creator>Zhang, Xiong</creator><creator>Li, Chen</creator><creator>Sun, Xianzhong</creator><creator>Wang, Kai</creator><creator>Ma, Yanwei</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7131-0888</orcidid><orcidid>https://orcid.org/0000-0002-0947-585X</orcidid><orcidid>https://orcid.org/0000-0002-6632-8653</orcidid><orcidid>https://orcid.org/0000-0002-1014-7714</orcidid></search><sort><creationdate>20180101</creationdate><title>Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors</title><author>Yu, Peng ; Cao, Gejin ; Yi, Sha ; Zhang, Xiong ; Li, Chen ; Sun, Xianzhong ; Wang, Kai ; Ma, Yanwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-71c5de113da07c568eb8f6a0f0b4f0e1017afaabe31c770b0ec3e9ca88e18ae43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activated carbon</topic><topic>Anodes</topic><topic>Capacitors</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Cathodes</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>MXenes</topic><topic>Nanotubes</topic><topic>Thermal stability</topic><topic>Titanium carbide</topic><topic>Vacuum filtration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Peng</creatorcontrib><creatorcontrib>Cao, Gejin</creatorcontrib><creatorcontrib>Yi, Sha</creatorcontrib><creatorcontrib>Zhang, Xiong</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Sun, Xianzhong</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Ma, Yanwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Peng</au><au>Cao, Gejin</au><au>Yi, Sha</au><au>Zhang, Xiong</au><au>Li, Chen</au><au>Sun, Xianzhong</au><au>Wang, Kai</au><au>Ma, Yanwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>1</volume><issue>13</issue><spage>596</spage><epage>5913</epage><pages>596-5913</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Two-dimensional (2D) MXenes have a very good application prospect in the field of electrochemical energy storage due to their metallic conductivity, high volumetric capacity, mechanical and thermal stability. Herein, we report the preparation of titanium carbide (Ti 3 C 2 T x )/carbon nanotube (CNT) flexible self-supporting composite films by vacuum filtration. The CNTs can effectively prevent Ti 3 C 2 T x from stacking and improve the electrochemical performance. The as-fabricated Ti 3 C 2 T x /CNT film shows a high reversible capacity of 489 mA h g −1 at a current density of 50 mA g −1 together with good cycling performance. The full-cell lithium-ion capacitor (LIC) is assembled using the Ti 3 C 2 T x /CNT film as the anode and activated carbon as the cathode. The LIC exhibits a high energy density of 67 Wh kg −1 (based on the total weight of the anode and the cathode), and a good capacity retention of 81.3% after 5000 cycles. These results suggest that Ti 3 C 2 T x -CNT films are promising as anode materials for lithium ion capacitors. A full-cell lithium-ion capacitor is assembled using a Ti 3 C 2 T x /CNT film as the anode and activated carbon as the cathode.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29537043</pmid><doi>10.1039/c8nr00380g</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7131-0888</orcidid><orcidid>https://orcid.org/0000-0002-0947-585X</orcidid><orcidid>https://orcid.org/0000-0002-6632-8653</orcidid><orcidid>https://orcid.org/0000-0002-1014-7714</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2018-01, Vol.1 (13), p.596-5913
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_c8nr00380g
source Royal Society Of Chemistry Journals 2008-
subjects Activated carbon
Anodes
Capacitors
Carbon
Carbon nanotubes
Cathodes
Electrochemical analysis
Electrode materials
Energy storage
Flux density
Lithium
Lithium ions
MXenes
Nanotubes
Thermal stability
Titanium carbide
Vacuum filtration
title Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binder-free%202D%20titanium%20carbide%20(MXene)/carbon%20nanotube%20composites%20for%20high-performance%20lithium-ion%20capacitors&rft.jtitle=Nanoscale&rft.au=Yu,%20Peng&rft.date=2018-01-01&rft.volume=1&rft.issue=13&rft.spage=596&rft.epage=5913&rft.pages=596-5913&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr00380g&rft_dat=%3Cproquest_rsc_p%3E2019520883%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019520883&rft_id=info:pmid/29537043&rfr_iscdi=true