Lipophilicity prediction of peptides and peptide derivatives by consensus machine learningElectronic supplementary information (ESI) available. See DOI: 10.1039/c8md00370j
Lipophilicity prediction is routinely applied to small molecules and presents a working alternative to experimental log P or log D determination. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke in silico appro...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1546 |
---|---|
container_issue | 9 |
container_start_page | 1538 |
container_title | |
container_volume | 9 |
creator | Fuchs, Jens-Alexander Grisoni, Francesca Kossenjans, Michael Hiss, Jan A Schneider, Gisbert |
description | Lipophilicity prediction is routinely applied to small molecules and presents a working alternative to experimental log
P
or log
D
determination. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke
in silico
approaches. Peptides and their derivatives and mimetics fill the structural gap between small synthetic drugs and genetically engineered macromolecules. Here, we present a data-driven machine learning method for peptide log
D
7.4
prediction. A model for estimating the lipophilicity of short linear peptides consisting of natural amino acids was developed. In a prospective test, we obtained accurate predictions for a set of newly synthesized linear tri- to hexapeptides. Further model development focused on more complex peptide mimetics from the AstraZeneca compound collection. The results obtained demonstrate the applicability of the new prediction model to peptides and peptide derivatives in a log
D
7.4
range of approximately −3 to 5, with superior accuracy to established lipophilicity models for small molecules.
Lipophilicity prediction is routinely applied to small molecules. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke
in silico
approaches. |
doi_str_mv | 10.1039/c8md00370j |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c8md00370j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c8md00370j</sourcerecordid><originalsourceid>FETCH-rsc_primary_c8md00370j3</originalsourceid><addsrcrecordid>eNqFT8tKA0EQHETBYHLxLrQ3PSTO7kTceNUNBgIe4n2ZzPSaDvNiZrKw3-RPuoiPg6B96aquoopm7Lzgs4KLxY2qrOZc3PH9ERuVfM6n5W1RHH9jLk7ZJKU9H0aUVbWYj9jbmoIPOzKkKPcQImpSmbwD30LAkEljAun0FwGNkTqZqRvu2x6UdwldOiSwUu3IIRiU0ZF7rQ2qHL0jBekQgkGLLsvYA7nWRys_Wq7qzeoaZCfJyK3BGWwQ4fF5dQ-_vxqzk1aahJPPfcYulvXLw9M0JtWESHYIb37s4n_98i-9CboV73exbLY</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lipophilicity prediction of peptides and peptide derivatives by consensus machine learningElectronic supplementary information (ESI) available. See DOI: 10.1039/c8md00370j</title><source>Royal Society Of Chemistry Journals 2008-</source><source>PubMed Central</source><creator>Fuchs, Jens-Alexander ; Grisoni, Francesca ; Kossenjans, Michael ; Hiss, Jan A ; Schneider, Gisbert</creator><creatorcontrib>Fuchs, Jens-Alexander ; Grisoni, Francesca ; Kossenjans, Michael ; Hiss, Jan A ; Schneider, Gisbert</creatorcontrib><description>Lipophilicity prediction is routinely applied to small molecules and presents a working alternative to experimental log
P
or log
D
determination. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke
in silico
approaches. Peptides and their derivatives and mimetics fill the structural gap between small synthetic drugs and genetically engineered macromolecules. Here, we present a data-driven machine learning method for peptide log
D
7.4
prediction. A model for estimating the lipophilicity of short linear peptides consisting of natural amino acids was developed. In a prospective test, we obtained accurate predictions for a set of newly synthesized linear tri- to hexapeptides. Further model development focused on more complex peptide mimetics from the AstraZeneca compound collection. The results obtained demonstrate the applicability of the new prediction model to peptides and peptide derivatives in a log
D
7.4
range of approximately −3 to 5, with superior accuracy to established lipophilicity models for small molecules.
Lipophilicity prediction is routinely applied to small molecules. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke
in silico
approaches.</description><identifier>ISSN: 2040-2503</identifier><identifier>EISSN: 2040-2511</identifier><identifier>DOI: 10.1039/c8md00370j</identifier><language>eng</language><creationdate>2018-09</creationdate><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Fuchs, Jens-Alexander</creatorcontrib><creatorcontrib>Grisoni, Francesca</creatorcontrib><creatorcontrib>Kossenjans, Michael</creatorcontrib><creatorcontrib>Hiss, Jan A</creatorcontrib><creatorcontrib>Schneider, Gisbert</creatorcontrib><title>Lipophilicity prediction of peptides and peptide derivatives by consensus machine learningElectronic supplementary information (ESI) available. See DOI: 10.1039/c8md00370j</title><description>Lipophilicity prediction is routinely applied to small molecules and presents a working alternative to experimental log
P
or log
D
determination. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke
in silico
approaches. Peptides and their derivatives and mimetics fill the structural gap between small synthetic drugs and genetically engineered macromolecules. Here, we present a data-driven machine learning method for peptide log
D
7.4
prediction. A model for estimating the lipophilicity of short linear peptides consisting of natural amino acids was developed. In a prospective test, we obtained accurate predictions for a set of newly synthesized linear tri- to hexapeptides. Further model development focused on more complex peptide mimetics from the AstraZeneca compound collection. The results obtained demonstrate the applicability of the new prediction model to peptides and peptide derivatives in a log
D
7.4
range of approximately −3 to 5, with superior accuracy to established lipophilicity models for small molecules.
Lipophilicity prediction is routinely applied to small molecules. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke
in silico
approaches.</description><issn>2040-2503</issn><issn>2040-2511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFT8tKA0EQHETBYHLxLrQ3PSTO7kTceNUNBgIe4n2ZzPSaDvNiZrKw3-RPuoiPg6B96aquoopm7Lzgs4KLxY2qrOZc3PH9ERuVfM6n5W1RHH9jLk7ZJKU9H0aUVbWYj9jbmoIPOzKkKPcQImpSmbwD30LAkEljAun0FwGNkTqZqRvu2x6UdwldOiSwUu3IIRiU0ZF7rQ2qHL0jBekQgkGLLsvYA7nWRys_Wq7qzeoaZCfJyK3BGWwQ4fF5dQ-_vxqzk1aahJPPfcYulvXLw9M0JtWESHYIb37s4n_98i-9CboV73exbLY</recordid><startdate>20180919</startdate><enddate>20180919</enddate><creator>Fuchs, Jens-Alexander</creator><creator>Grisoni, Francesca</creator><creator>Kossenjans, Michael</creator><creator>Hiss, Jan A</creator><creator>Schneider, Gisbert</creator><scope/></search><sort><creationdate>20180919</creationdate><title>Lipophilicity prediction of peptides and peptide derivatives by consensus machine learningElectronic supplementary information (ESI) available. See DOI: 10.1039/c8md00370j</title><author>Fuchs, Jens-Alexander ; Grisoni, Francesca ; Kossenjans, Michael ; Hiss, Jan A ; Schneider, Gisbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c8md00370j3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Fuchs, Jens-Alexander</creatorcontrib><creatorcontrib>Grisoni, Francesca</creatorcontrib><creatorcontrib>Kossenjans, Michael</creatorcontrib><creatorcontrib>Hiss, Jan A</creatorcontrib><creatorcontrib>Schneider, Gisbert</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuchs, Jens-Alexander</au><au>Grisoni, Francesca</au><au>Kossenjans, Michael</au><au>Hiss, Jan A</au><au>Schneider, Gisbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipophilicity prediction of peptides and peptide derivatives by consensus machine learningElectronic supplementary information (ESI) available. See DOI: 10.1039/c8md00370j</atitle><date>2018-09-19</date><risdate>2018</risdate><volume>9</volume><issue>9</issue><spage>1538</spage><epage>1546</epage><pages>1538-1546</pages><issn>2040-2503</issn><eissn>2040-2511</eissn><abstract>Lipophilicity prediction is routinely applied to small molecules and presents a working alternative to experimental log
P
or log
D
determination. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke
in silico
approaches. Peptides and their derivatives and mimetics fill the structural gap between small synthetic drugs and genetically engineered macromolecules. Here, we present a data-driven machine learning method for peptide log
D
7.4
prediction. A model for estimating the lipophilicity of short linear peptides consisting of natural amino acids was developed. In a prospective test, we obtained accurate predictions for a set of newly synthesized linear tri- to hexapeptides. Further model development focused on more complex peptide mimetics from the AstraZeneca compound collection. The results obtained demonstrate the applicability of the new prediction model to peptides and peptide derivatives in a log
D
7.4
range of approximately −3 to 5, with superior accuracy to established lipophilicity models for small molecules.
Lipophilicity prediction is routinely applied to small molecules. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke
in silico
approaches.</abstract><doi>10.1039/c8md00370j</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-2503 |
ispartof | |
issn | 2040-2503 2040-2511 |
language | eng |
recordid | cdi_rsc_primary_c8md00370j |
source | Royal Society Of Chemistry Journals 2008-; PubMed Central |
title | Lipophilicity prediction of peptides and peptide derivatives by consensus machine learningElectronic supplementary information (ESI) available. See DOI: 10.1039/c8md00370j |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipophilicity%20prediction%20of%20peptides%20and%20peptide%20derivatives%20by%20consensus%20machine%20learningElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c8md00370j&rft.au=Fuchs,%20Jens-Alexander&rft.date=2018-09-19&rft.volume=9&rft.issue=9&rft.spage=1538&rft.epage=1546&rft.pages=1538-1546&rft.issn=2040-2503&rft.eissn=2040-2511&rft_id=info:doi/10.1039/c8md00370j&rft_dat=%3Crsc%3Ec8md00370j%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |