Lipophilicity prediction of peptides and peptide derivatives by consensus machine learningElectronic supplementary information (ESI) available. See DOI: 10.1039/c8md00370j

Lipophilicity prediction is routinely applied to small molecules and presents a working alternative to experimental log  P or log  D determination. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke in silico appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fuchs, Jens-Alexander, Grisoni, Francesca, Kossenjans, Michael, Hiss, Jan A, Schneider, Gisbert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1546
container_issue 9
container_start_page 1538
container_title
container_volume 9
creator Fuchs, Jens-Alexander
Grisoni, Francesca
Kossenjans, Michael
Hiss, Jan A
Schneider, Gisbert
description Lipophilicity prediction is routinely applied to small molecules and presents a working alternative to experimental log  P or log  D determination. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke in silico approaches. Peptides and their derivatives and mimetics fill the structural gap between small synthetic drugs and genetically engineered macromolecules. Here, we present a data-driven machine learning method for peptide log  D 7.4 prediction. A model for estimating the lipophilicity of short linear peptides consisting of natural amino acids was developed. In a prospective test, we obtained accurate predictions for a set of newly synthesized linear tri- to hexapeptides. Further model development focused on more complex peptide mimetics from the AstraZeneca compound collection. The results obtained demonstrate the applicability of the new prediction model to peptides and peptide derivatives in a log  D 7.4 range of approximately −3 to 5, with superior accuracy to established lipophilicity models for small molecules. Lipophilicity prediction is routinely applied to small molecules. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke in silico approaches.
doi_str_mv 10.1039/c8md00370j
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c8md00370j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c8md00370j</sourcerecordid><originalsourceid>FETCH-rsc_primary_c8md00370j3</originalsourceid><addsrcrecordid>eNqFT8tKA0EQHETBYHLxLrQ3PSTO7kTceNUNBgIe4n2ZzPSaDvNiZrKw3-RPuoiPg6B96aquoopm7Lzgs4KLxY2qrOZc3PH9ERuVfM6n5W1RHH9jLk7ZJKU9H0aUVbWYj9jbmoIPOzKkKPcQImpSmbwD30LAkEljAun0FwGNkTqZqRvu2x6UdwldOiSwUu3IIRiU0ZF7rQ2qHL0jBekQgkGLLsvYA7nWRys_Wq7qzeoaZCfJyK3BGWwQ4fF5dQ-_vxqzk1aahJPPfcYulvXLw9M0JtWESHYIb37s4n_98i-9CboV73exbLY</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lipophilicity prediction of peptides and peptide derivatives by consensus machine learningElectronic supplementary information (ESI) available. See DOI: 10.1039/c8md00370j</title><source>Royal Society Of Chemistry Journals 2008-</source><source>PubMed Central</source><creator>Fuchs, Jens-Alexander ; Grisoni, Francesca ; Kossenjans, Michael ; Hiss, Jan A ; Schneider, Gisbert</creator><creatorcontrib>Fuchs, Jens-Alexander ; Grisoni, Francesca ; Kossenjans, Michael ; Hiss, Jan A ; Schneider, Gisbert</creatorcontrib><description>Lipophilicity prediction is routinely applied to small molecules and presents a working alternative to experimental log  P or log  D determination. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke in silico approaches. Peptides and their derivatives and mimetics fill the structural gap between small synthetic drugs and genetically engineered macromolecules. Here, we present a data-driven machine learning method for peptide log  D 7.4 prediction. A model for estimating the lipophilicity of short linear peptides consisting of natural amino acids was developed. In a prospective test, we obtained accurate predictions for a set of newly synthesized linear tri- to hexapeptides. Further model development focused on more complex peptide mimetics from the AstraZeneca compound collection. The results obtained demonstrate the applicability of the new prediction model to peptides and peptide derivatives in a log  D 7.4 range of approximately −3 to 5, with superior accuracy to established lipophilicity models for small molecules. Lipophilicity prediction is routinely applied to small molecules. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke in silico approaches.</description><identifier>ISSN: 2040-2503</identifier><identifier>EISSN: 2040-2511</identifier><identifier>DOI: 10.1039/c8md00370j</identifier><language>eng</language><creationdate>2018-09</creationdate><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Fuchs, Jens-Alexander</creatorcontrib><creatorcontrib>Grisoni, Francesca</creatorcontrib><creatorcontrib>Kossenjans, Michael</creatorcontrib><creatorcontrib>Hiss, Jan A</creatorcontrib><creatorcontrib>Schneider, Gisbert</creatorcontrib><title>Lipophilicity prediction of peptides and peptide derivatives by consensus machine learningElectronic supplementary information (ESI) available. See DOI: 10.1039/c8md00370j</title><description>Lipophilicity prediction is routinely applied to small molecules and presents a working alternative to experimental log  P or log  D determination. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke in silico approaches. Peptides and their derivatives and mimetics fill the structural gap between small synthetic drugs and genetically engineered macromolecules. Here, we present a data-driven machine learning method for peptide log  D 7.4 prediction. A model for estimating the lipophilicity of short linear peptides consisting of natural amino acids was developed. In a prospective test, we obtained accurate predictions for a set of newly synthesized linear tri- to hexapeptides. Further model development focused on more complex peptide mimetics from the AstraZeneca compound collection. The results obtained demonstrate the applicability of the new prediction model to peptides and peptide derivatives in a log  D 7.4 range of approximately −3 to 5, with superior accuracy to established lipophilicity models for small molecules. Lipophilicity prediction is routinely applied to small molecules. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke in silico approaches.</description><issn>2040-2503</issn><issn>2040-2511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFT8tKA0EQHETBYHLxLrQ3PSTO7kTceNUNBgIe4n2ZzPSaDvNiZrKw3-RPuoiPg6B96aquoopm7Lzgs4KLxY2qrOZc3PH9ERuVfM6n5W1RHH9jLk7ZJKU9H0aUVbWYj9jbmoIPOzKkKPcQImpSmbwD30LAkEljAun0FwGNkTqZqRvu2x6UdwldOiSwUu3IIRiU0ZF7rQ2qHL0jBekQgkGLLsvYA7nWRys_Wq7qzeoaZCfJyK3BGWwQ4fF5dQ-_vxqzk1aahJPPfcYulvXLw9M0JtWESHYIb37s4n_98i-9CboV73exbLY</recordid><startdate>20180919</startdate><enddate>20180919</enddate><creator>Fuchs, Jens-Alexander</creator><creator>Grisoni, Francesca</creator><creator>Kossenjans, Michael</creator><creator>Hiss, Jan A</creator><creator>Schneider, Gisbert</creator><scope/></search><sort><creationdate>20180919</creationdate><title>Lipophilicity prediction of peptides and peptide derivatives by consensus machine learningElectronic supplementary information (ESI) available. See DOI: 10.1039/c8md00370j</title><author>Fuchs, Jens-Alexander ; Grisoni, Francesca ; Kossenjans, Michael ; Hiss, Jan A ; Schneider, Gisbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c8md00370j3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Fuchs, Jens-Alexander</creatorcontrib><creatorcontrib>Grisoni, Francesca</creatorcontrib><creatorcontrib>Kossenjans, Michael</creatorcontrib><creatorcontrib>Hiss, Jan A</creatorcontrib><creatorcontrib>Schneider, Gisbert</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuchs, Jens-Alexander</au><au>Grisoni, Francesca</au><au>Kossenjans, Michael</au><au>Hiss, Jan A</au><au>Schneider, Gisbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipophilicity prediction of peptides and peptide derivatives by consensus machine learningElectronic supplementary information (ESI) available. See DOI: 10.1039/c8md00370j</atitle><date>2018-09-19</date><risdate>2018</risdate><volume>9</volume><issue>9</issue><spage>1538</spage><epage>1546</epage><pages>1538-1546</pages><issn>2040-2503</issn><eissn>2040-2511</eissn><abstract>Lipophilicity prediction is routinely applied to small molecules and presents a working alternative to experimental log  P or log  D determination. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke in silico approaches. Peptides and their derivatives and mimetics fill the structural gap between small synthetic drugs and genetically engineered macromolecules. Here, we present a data-driven machine learning method for peptide log  D 7.4 prediction. A model for estimating the lipophilicity of short linear peptides consisting of natural amino acids was developed. In a prospective test, we obtained accurate predictions for a set of newly synthesized linear tri- to hexapeptides. Further model development focused on more complex peptide mimetics from the AstraZeneca compound collection. The results obtained demonstrate the applicability of the new prediction model to peptides and peptide derivatives in a log  D 7.4 range of approximately −3 to 5, with superior accuracy to established lipophilicity models for small molecules. Lipophilicity prediction is routinely applied to small molecules. For compounds outside the domain of classical medicinal chemistry these predictions lack accuracy, advocating the development of bespoke in silico approaches.</abstract><doi>10.1039/c8md00370j</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-2503
ispartof
issn 2040-2503
2040-2511
language eng
recordid cdi_rsc_primary_c8md00370j
source Royal Society Of Chemistry Journals 2008-; PubMed Central
title Lipophilicity prediction of peptides and peptide derivatives by consensus machine learningElectronic supplementary information (ESI) available. See DOI: 10.1039/c8md00370j
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipophilicity%20prediction%20of%20peptides%20and%20peptide%20derivatives%20by%20consensus%20machine%20learningElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c8md00370j&rft.au=Fuchs,%20Jens-Alexander&rft.date=2018-09-19&rft.volume=9&rft.issue=9&rft.spage=1538&rft.epage=1546&rft.pages=1538-1546&rft.issn=2040-2503&rft.eissn=2040-2511&rft_id=info:doi/10.1039/c8md00370j&rft_dat=%3Crsc%3Ec8md00370j%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true