Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes

The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Faraday discussions 2018-09, Vol.29, p.179-191
Hauptverfasser: Lang, Chao, Shen, Yue-xiao, LaNasa, Jacob A, Ye, Dan, Song, Woochul, Zimudzi, Tawanda J, Hickner, Michael A, Gomez, Enrique D, Gomez, Esther W, Kumar, Manish, Hickey, Robert J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue
container_start_page 179
container_title Faraday discussions
container_volume 29
creator Lang, Chao
Shen, Yue-xiao
LaNasa, Jacob A
Ye, Dan
Song, Woochul
Zimudzi, Tawanda J
Hickner, Michael A
Gomez, Enrique D
Gomez, Esther W
Kumar, Manish
Hickey, Robert J
description The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous studies, we have shown that artificial water channels can have excellent water transport abilities that are comparable to biological water channel proteins, aquaporins. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes. Specifically, we synthesized an amphiphilic triblock copolymer, poly(isoprene)- block -poly(ethylene oxide)- block -poly(isoprene), which is a high molecular weight synthetic analog of naturally occurring lipids in terms of its self-assembled structure. This polymer was used to build stacked membranes composed of self-assembled lamellae. The resulting membranes resemble layers of natural lipid bilayers in living systems, but with superior mechanical properties suitable for real-world applications. The procedures used to synthesize the triblock copolymer resulted in membranes with increased stability due to the crosslinkability of the hydrophobic domains. Furthermore, the introduction of bridging hydrophilic domains leads to the preservation of the stacked membrane structure when the membrane is in contact with water, something that is challenging for diblock lamellae that tend to swell, and delaminate in aqueous solutions. This new method of membrane fabrication offers a practical model for making channel-based biomimetic membranes, which may lead to technological applications in reverse osmosis, nanofiltration, and ultrafiltration membranes. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes.
doi_str_mv 10.1039/c8fd00044a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8fd00044a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064250272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-60a8118088dc90c837ba285fd162f71e7854f8f12d70b09ebec2674c515a67403</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhiMEYmNw4Q6qxAUhFfLRJulxGgyQJnGBA6cqTV3UrWlK0h7278k-GBInW_Jj-_VrhC4JvieYZQ9aViXGOEnUERoTxpM4TTJ5vMnTLOY8wSN05v0yMDxUT9GIZpmgTGZj9DlzoPq6_Yq0s97HTd2uoIwaZaBplIuKxupVpG1nm7UBF_mh66zbNjRqDc5HlQ1UbU1toK91ZMAUTrXgz9FJpRoPF_s4QR_zp_fZS7x4e36dTRexZkz0McdKEiKxlKXOsJZMFIrKtCoJp5UgIGSaVLIitBS4wBkUoCkXiU5JqkLEbIJud3M7Z78H8H1uaq836luwg88p5glNMQ0HT9DNP3RpB9cGdTklhKZhr2CButtRW0ccVHnnaqPcOic43xiez-T8cWv4NMDX-5FDYaA8oL8OB-BqBzivD9W_j7EfqjiEmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112528573</pqid></control><display><type>article</type><title>Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Lang, Chao ; Shen, Yue-xiao ; LaNasa, Jacob A ; Ye, Dan ; Song, Woochul ; Zimudzi, Tawanda J ; Hickner, Michael A ; Gomez, Enrique D ; Gomez, Esther W ; Kumar, Manish ; Hickey, Robert J</creator><creatorcontrib>Lang, Chao ; Shen, Yue-xiao ; LaNasa, Jacob A ; Ye, Dan ; Song, Woochul ; Zimudzi, Tawanda J ; Hickner, Michael A ; Gomez, Enrique D ; Gomez, Esther W ; Kumar, Manish ; Hickey, Robert J</creatorcontrib><description>The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous studies, we have shown that artificial water channels can have excellent water transport abilities that are comparable to biological water channel proteins, aquaporins. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes. Specifically, we synthesized an amphiphilic triblock copolymer, poly(isoprene)- block -poly(ethylene oxide)- block -poly(isoprene), which is a high molecular weight synthetic analog of naturally occurring lipids in terms of its self-assembled structure. This polymer was used to build stacked membranes composed of self-assembled lamellae. The resulting membranes resemble layers of natural lipid bilayers in living systems, but with superior mechanical properties suitable for real-world applications. The procedures used to synthesize the triblock copolymer resulted in membranes with increased stability due to the crosslinkability of the hydrophobic domains. Furthermore, the introduction of bridging hydrophilic domains leads to the preservation of the stacked membrane structure when the membrane is in contact with water, something that is challenging for diblock lamellae that tend to swell, and delaminate in aqueous solutions. This new method of membrane fabrication offers a practical model for making channel-based biomimetic membranes, which may lead to technological applications in reverse osmosis, nanofiltration, and ultrafiltration membranes. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes.</description><identifier>ISSN: 1359-6640</identifier><identifier>EISSN: 1364-5498</identifier><identifier>DOI: 10.1039/c8fd00044a</identifier><identifier>PMID: 29972389</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biological properties ; Biomimetic materials ; Biomimetic Materials - chemistry ; Block copolymers ; Channels ; Chemical synthesis ; Cross-Linking Reagents - chemical synthesis ; Cross-Linking Reagents - chemistry ; Crosslinking ; Domains ; Ethylene oxide ; Hydrophobic and Hydrophilic Interactions ; Isoprene ; Lipid Bilayers - chemical synthesis ; Lipid Bilayers - chemistry ; Lipids ; Mechanical properties ; Membrane structures ; Membranes ; Molecular Structure ; Molecular weight ; Nanofiltration ; Particle Size ; Polymers - chemical synthesis ; Polymers - chemistry ; Proteins ; Reverse osmosis ; Self-assembly ; Surface Properties ; Transport properties ; Ultrafiltration</subject><ispartof>Faraday discussions, 2018-09, Vol.29, p.179-191</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-60a8118088dc90c837ba285fd162f71e7854f8f12d70b09ebec2674c515a67403</citedby><cites>FETCH-LOGICAL-c337t-60a8118088dc90c837ba285fd162f71e7854f8f12d70b09ebec2674c515a67403</cites><orcidid>0000-0001-6808-7411 ; 0000-0001-8212-4450 ; 0000-0001-7847-9646 ; 0000-0001-8942-4480 ; 0000-0001-5545-3793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29972389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lang, Chao</creatorcontrib><creatorcontrib>Shen, Yue-xiao</creatorcontrib><creatorcontrib>LaNasa, Jacob A</creatorcontrib><creatorcontrib>Ye, Dan</creatorcontrib><creatorcontrib>Song, Woochul</creatorcontrib><creatorcontrib>Zimudzi, Tawanda J</creatorcontrib><creatorcontrib>Hickner, Michael A</creatorcontrib><creatorcontrib>Gomez, Enrique D</creatorcontrib><creatorcontrib>Gomez, Esther W</creatorcontrib><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Hickey, Robert J</creatorcontrib><title>Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes</title><title>Faraday discussions</title><addtitle>Faraday Discuss</addtitle><description>The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous studies, we have shown that artificial water channels can have excellent water transport abilities that are comparable to biological water channel proteins, aquaporins. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes. Specifically, we synthesized an amphiphilic triblock copolymer, poly(isoprene)- block -poly(ethylene oxide)- block -poly(isoprene), which is a high molecular weight synthetic analog of naturally occurring lipids in terms of its self-assembled structure. This polymer was used to build stacked membranes composed of self-assembled lamellae. The resulting membranes resemble layers of natural lipid bilayers in living systems, but with superior mechanical properties suitable for real-world applications. The procedures used to synthesize the triblock copolymer resulted in membranes with increased stability due to the crosslinkability of the hydrophobic domains. Furthermore, the introduction of bridging hydrophilic domains leads to the preservation of the stacked membrane structure when the membrane is in contact with water, something that is challenging for diblock lamellae that tend to swell, and delaminate in aqueous solutions. This new method of membrane fabrication offers a practical model for making channel-based biomimetic membranes, which may lead to technological applications in reverse osmosis, nanofiltration, and ultrafiltration membranes. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes.</description><subject>Biological properties</subject><subject>Biomimetic materials</subject><subject>Biomimetic Materials - chemistry</subject><subject>Block copolymers</subject><subject>Channels</subject><subject>Chemical synthesis</subject><subject>Cross-Linking Reagents - chemical synthesis</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Crosslinking</subject><subject>Domains</subject><subject>Ethylene oxide</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Isoprene</subject><subject>Lipid Bilayers - chemical synthesis</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Mechanical properties</subject><subject>Membrane structures</subject><subject>Membranes</subject><subject>Molecular Structure</subject><subject>Molecular weight</subject><subject>Nanofiltration</subject><subject>Particle Size</subject><subject>Polymers - chemical synthesis</subject><subject>Polymers - chemistry</subject><subject>Proteins</subject><subject>Reverse osmosis</subject><subject>Self-assembly</subject><subject>Surface Properties</subject><subject>Transport properties</subject><subject>Ultrafiltration</subject><issn>1359-6640</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1PwzAMhiMEYmNw4Q6qxAUhFfLRJulxGgyQJnGBA6cqTV3UrWlK0h7278k-GBInW_Jj-_VrhC4JvieYZQ9aViXGOEnUERoTxpM4TTJ5vMnTLOY8wSN05v0yMDxUT9GIZpmgTGZj9DlzoPq6_Yq0s97HTd2uoIwaZaBplIuKxupVpG1nm7UBF_mh66zbNjRqDc5HlQ1UbU1toK91ZMAUTrXgz9FJpRoPF_s4QR_zp_fZS7x4e36dTRexZkz0McdKEiKxlKXOsJZMFIrKtCoJp5UgIGSaVLIitBS4wBkUoCkXiU5JqkLEbIJud3M7Z78H8H1uaq836luwg88p5glNMQ0HT9DNP3RpB9cGdTklhKZhr2CButtRW0ccVHnnaqPcOic43xiez-T8cWv4NMDX-5FDYaA8oL8OB-BqBzivD9W_j7EfqjiEmg</recordid><startdate>20180928</startdate><enddate>20180928</enddate><creator>Lang, Chao</creator><creator>Shen, Yue-xiao</creator><creator>LaNasa, Jacob A</creator><creator>Ye, Dan</creator><creator>Song, Woochul</creator><creator>Zimudzi, Tawanda J</creator><creator>Hickner, Michael A</creator><creator>Gomez, Enrique D</creator><creator>Gomez, Esther W</creator><creator>Kumar, Manish</creator><creator>Hickey, Robert J</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6808-7411</orcidid><orcidid>https://orcid.org/0000-0001-8212-4450</orcidid><orcidid>https://orcid.org/0000-0001-7847-9646</orcidid><orcidid>https://orcid.org/0000-0001-8942-4480</orcidid><orcidid>https://orcid.org/0000-0001-5545-3793</orcidid></search><sort><creationdate>20180928</creationdate><title>Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes</title><author>Lang, Chao ; Shen, Yue-xiao ; LaNasa, Jacob A ; Ye, Dan ; Song, Woochul ; Zimudzi, Tawanda J ; Hickner, Michael A ; Gomez, Enrique D ; Gomez, Esther W ; Kumar, Manish ; Hickey, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-60a8118088dc90c837ba285fd162f71e7854f8f12d70b09ebec2674c515a67403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biological properties</topic><topic>Biomimetic materials</topic><topic>Biomimetic Materials - chemistry</topic><topic>Block copolymers</topic><topic>Channels</topic><topic>Chemical synthesis</topic><topic>Cross-Linking Reagents - chemical synthesis</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Crosslinking</topic><topic>Domains</topic><topic>Ethylene oxide</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Isoprene</topic><topic>Lipid Bilayers - chemical synthesis</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Mechanical properties</topic><topic>Membrane structures</topic><topic>Membranes</topic><topic>Molecular Structure</topic><topic>Molecular weight</topic><topic>Nanofiltration</topic><topic>Particle Size</topic><topic>Polymers - chemical synthesis</topic><topic>Polymers - chemistry</topic><topic>Proteins</topic><topic>Reverse osmosis</topic><topic>Self-assembly</topic><topic>Surface Properties</topic><topic>Transport properties</topic><topic>Ultrafiltration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, Chao</creatorcontrib><creatorcontrib>Shen, Yue-xiao</creatorcontrib><creatorcontrib>LaNasa, Jacob A</creatorcontrib><creatorcontrib>Ye, Dan</creatorcontrib><creatorcontrib>Song, Woochul</creatorcontrib><creatorcontrib>Zimudzi, Tawanda J</creatorcontrib><creatorcontrib>Hickner, Michael A</creatorcontrib><creatorcontrib>Gomez, Enrique D</creatorcontrib><creatorcontrib>Gomez, Esther W</creatorcontrib><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Hickey, Robert J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lang, Chao</au><au>Shen, Yue-xiao</au><au>LaNasa, Jacob A</au><au>Ye, Dan</au><au>Song, Woochul</au><au>Zimudzi, Tawanda J</au><au>Hickner, Michael A</au><au>Gomez, Enrique D</au><au>Gomez, Esther W</au><au>Kumar, Manish</au><au>Hickey, Robert J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes</atitle><jtitle>Faraday discussions</jtitle><addtitle>Faraday Discuss</addtitle><date>2018-09-28</date><risdate>2018</risdate><volume>29</volume><spage>179</spage><epage>191</epage><pages>179-191</pages><issn>1359-6640</issn><eissn>1364-5498</eissn><abstract>The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous studies, we have shown that artificial water channels can have excellent water transport abilities that are comparable to biological water channel proteins, aquaporins. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes. Specifically, we synthesized an amphiphilic triblock copolymer, poly(isoprene)- block -poly(ethylene oxide)- block -poly(isoprene), which is a high molecular weight synthetic analog of naturally occurring lipids in terms of its self-assembled structure. This polymer was used to build stacked membranes composed of self-assembled lamellae. The resulting membranes resemble layers of natural lipid bilayers in living systems, but with superior mechanical properties suitable for real-world applications. The procedures used to synthesize the triblock copolymer resulted in membranes with increased stability due to the crosslinkability of the hydrophobic domains. Furthermore, the introduction of bridging hydrophilic domains leads to the preservation of the stacked membrane structure when the membrane is in contact with water, something that is challenging for diblock lamellae that tend to swell, and delaminate in aqueous solutions. This new method of membrane fabrication offers a practical model for making channel-based biomimetic membranes, which may lead to technological applications in reverse osmosis, nanofiltration, and ultrafiltration membranes. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29972389</pmid><doi>10.1039/c8fd00044a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6808-7411</orcidid><orcidid>https://orcid.org/0000-0001-8212-4450</orcidid><orcidid>https://orcid.org/0000-0001-7847-9646</orcidid><orcidid>https://orcid.org/0000-0001-8942-4480</orcidid><orcidid>https://orcid.org/0000-0001-5545-3793</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-6640
ispartof Faraday discussions, 2018-09, Vol.29, p.179-191
issn 1359-6640
1364-5498
language eng
recordid cdi_rsc_primary_c8fd00044a
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Biological properties
Biomimetic materials
Biomimetic Materials - chemistry
Block copolymers
Channels
Chemical synthesis
Cross-Linking Reagents - chemical synthesis
Cross-Linking Reagents - chemistry
Crosslinking
Domains
Ethylene oxide
Hydrophobic and Hydrophilic Interactions
Isoprene
Lipid Bilayers - chemical synthesis
Lipid Bilayers - chemistry
Lipids
Mechanical properties
Membrane structures
Membranes
Molecular Structure
Molecular weight
Nanofiltration
Particle Size
Polymers - chemical synthesis
Polymers - chemistry
Proteins
Reverse osmosis
Self-assembly
Surface Properties
Transport properties
Ultrafiltration
title Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creating%20cross-linked%20lamellar%20block%20copolymer%20supporting%20layers%20for%20biomimetic%20membranes&rft.jtitle=Faraday%20discussions&rft.au=Lang,%20Chao&rft.date=2018-09-28&rft.volume=29&rft.spage=179&rft.epage=191&rft.pages=179-191&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/10.1039/c8fd00044a&rft_dat=%3Cproquest_rsc_p%3E2064250272%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112528573&rft_id=info:pmid/29972389&rfr_iscdi=true