Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes
The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous...
Gespeichert in:
Veröffentlicht in: | Faraday discussions 2018-09, Vol.29, p.179-191 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | |
container_start_page | 179 |
container_title | Faraday discussions |
container_volume | 29 |
creator | Lang, Chao Shen, Yue-xiao LaNasa, Jacob A Ye, Dan Song, Woochul Zimudzi, Tawanda J Hickner, Michael A Gomez, Enrique D Gomez, Esther W Kumar, Manish Hickey, Robert J |
description | The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous studies, we have shown that artificial water channels can have excellent water transport abilities that are comparable to biological water channel proteins, aquaporins. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes. Specifically, we synthesized an amphiphilic triblock copolymer, poly(isoprene)-
block
-poly(ethylene oxide)-
block
-poly(isoprene), which is a high molecular weight synthetic analog of naturally occurring lipids in terms of its self-assembled structure. This polymer was used to build stacked membranes composed of self-assembled lamellae. The resulting membranes resemble layers of natural lipid bilayers in living systems, but with superior mechanical properties suitable for real-world applications. The procedures used to synthesize the triblock copolymer resulted in membranes with increased stability due to the crosslinkability of the hydrophobic domains. Furthermore, the introduction of bridging hydrophilic domains leads to the preservation of the stacked membrane structure when the membrane is in contact with water, something that is challenging for diblock lamellae that tend to swell, and delaminate in aqueous solutions. This new method of membrane fabrication offers a practical model for making channel-based biomimetic membranes, which may lead to technological applications in reverse osmosis, nanofiltration, and ultrafiltration membranes.
In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes. |
doi_str_mv | 10.1039/c8fd00044a |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8fd00044a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064250272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-60a8118088dc90c837ba285fd162f71e7854f8f12d70b09ebec2674c515a67403</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhiMEYmNw4Q6qxAUhFfLRJulxGgyQJnGBA6cqTV3UrWlK0h7278k-GBInW_Jj-_VrhC4JvieYZQ9aViXGOEnUERoTxpM4TTJ5vMnTLOY8wSN05v0yMDxUT9GIZpmgTGZj9DlzoPq6_Yq0s97HTd2uoIwaZaBplIuKxupVpG1nm7UBF_mh66zbNjRqDc5HlQ1UbU1toK91ZMAUTrXgz9FJpRoPF_s4QR_zp_fZS7x4e36dTRexZkz0McdKEiKxlKXOsJZMFIrKtCoJp5UgIGSaVLIitBS4wBkUoCkXiU5JqkLEbIJud3M7Z78H8H1uaq836luwg88p5glNMQ0HT9DNP3RpB9cGdTklhKZhr2CButtRW0ccVHnnaqPcOic43xiez-T8cWv4NMDX-5FDYaA8oL8OB-BqBzivD9W_j7EfqjiEmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112528573</pqid></control><display><type>article</type><title>Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Lang, Chao ; Shen, Yue-xiao ; LaNasa, Jacob A ; Ye, Dan ; Song, Woochul ; Zimudzi, Tawanda J ; Hickner, Michael A ; Gomez, Enrique D ; Gomez, Esther W ; Kumar, Manish ; Hickey, Robert J</creator><creatorcontrib>Lang, Chao ; Shen, Yue-xiao ; LaNasa, Jacob A ; Ye, Dan ; Song, Woochul ; Zimudzi, Tawanda J ; Hickner, Michael A ; Gomez, Enrique D ; Gomez, Esther W ; Kumar, Manish ; Hickey, Robert J</creatorcontrib><description>The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous studies, we have shown that artificial water channels can have excellent water transport abilities that are comparable to biological water channel proteins, aquaporins. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes. Specifically, we synthesized an amphiphilic triblock copolymer, poly(isoprene)-
block
-poly(ethylene oxide)-
block
-poly(isoprene), which is a high molecular weight synthetic analog of naturally occurring lipids in terms of its self-assembled structure. This polymer was used to build stacked membranes composed of self-assembled lamellae. The resulting membranes resemble layers of natural lipid bilayers in living systems, but with superior mechanical properties suitable for real-world applications. The procedures used to synthesize the triblock copolymer resulted in membranes with increased stability due to the crosslinkability of the hydrophobic domains. Furthermore, the introduction of bridging hydrophilic domains leads to the preservation of the stacked membrane structure when the membrane is in contact with water, something that is challenging for diblock lamellae that tend to swell, and delaminate in aqueous solutions. This new method of membrane fabrication offers a practical model for making channel-based biomimetic membranes, which may lead to technological applications in reverse osmosis, nanofiltration, and ultrafiltration membranes.
In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes.</description><identifier>ISSN: 1359-6640</identifier><identifier>EISSN: 1364-5498</identifier><identifier>DOI: 10.1039/c8fd00044a</identifier><identifier>PMID: 29972389</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biological properties ; Biomimetic materials ; Biomimetic Materials - chemistry ; Block copolymers ; Channels ; Chemical synthesis ; Cross-Linking Reagents - chemical synthesis ; Cross-Linking Reagents - chemistry ; Crosslinking ; Domains ; Ethylene oxide ; Hydrophobic and Hydrophilic Interactions ; Isoprene ; Lipid Bilayers - chemical synthesis ; Lipid Bilayers - chemistry ; Lipids ; Mechanical properties ; Membrane structures ; Membranes ; Molecular Structure ; Molecular weight ; Nanofiltration ; Particle Size ; Polymers - chemical synthesis ; Polymers - chemistry ; Proteins ; Reverse osmosis ; Self-assembly ; Surface Properties ; Transport properties ; Ultrafiltration</subject><ispartof>Faraday discussions, 2018-09, Vol.29, p.179-191</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-60a8118088dc90c837ba285fd162f71e7854f8f12d70b09ebec2674c515a67403</citedby><cites>FETCH-LOGICAL-c337t-60a8118088dc90c837ba285fd162f71e7854f8f12d70b09ebec2674c515a67403</cites><orcidid>0000-0001-6808-7411 ; 0000-0001-8212-4450 ; 0000-0001-7847-9646 ; 0000-0001-8942-4480 ; 0000-0001-5545-3793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29972389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lang, Chao</creatorcontrib><creatorcontrib>Shen, Yue-xiao</creatorcontrib><creatorcontrib>LaNasa, Jacob A</creatorcontrib><creatorcontrib>Ye, Dan</creatorcontrib><creatorcontrib>Song, Woochul</creatorcontrib><creatorcontrib>Zimudzi, Tawanda J</creatorcontrib><creatorcontrib>Hickner, Michael A</creatorcontrib><creatorcontrib>Gomez, Enrique D</creatorcontrib><creatorcontrib>Gomez, Esther W</creatorcontrib><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Hickey, Robert J</creatorcontrib><title>Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes</title><title>Faraday discussions</title><addtitle>Faraday Discuss</addtitle><description>The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous studies, we have shown that artificial water channels can have excellent water transport abilities that are comparable to biological water channel proteins, aquaporins. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes. Specifically, we synthesized an amphiphilic triblock copolymer, poly(isoprene)-
block
-poly(ethylene oxide)-
block
-poly(isoprene), which is a high molecular weight synthetic analog of naturally occurring lipids in terms of its self-assembled structure. This polymer was used to build stacked membranes composed of self-assembled lamellae. The resulting membranes resemble layers of natural lipid bilayers in living systems, but with superior mechanical properties suitable for real-world applications. The procedures used to synthesize the triblock copolymer resulted in membranes with increased stability due to the crosslinkability of the hydrophobic domains. Furthermore, the introduction of bridging hydrophilic domains leads to the preservation of the stacked membrane structure when the membrane is in contact with water, something that is challenging for diblock lamellae that tend to swell, and delaminate in aqueous solutions. This new method of membrane fabrication offers a practical model for making channel-based biomimetic membranes, which may lead to technological applications in reverse osmosis, nanofiltration, and ultrafiltration membranes.
In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes.</description><subject>Biological properties</subject><subject>Biomimetic materials</subject><subject>Biomimetic Materials - chemistry</subject><subject>Block copolymers</subject><subject>Channels</subject><subject>Chemical synthesis</subject><subject>Cross-Linking Reagents - chemical synthesis</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Crosslinking</subject><subject>Domains</subject><subject>Ethylene oxide</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Isoprene</subject><subject>Lipid Bilayers - chemical synthesis</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Mechanical properties</subject><subject>Membrane structures</subject><subject>Membranes</subject><subject>Molecular Structure</subject><subject>Molecular weight</subject><subject>Nanofiltration</subject><subject>Particle Size</subject><subject>Polymers - chemical synthesis</subject><subject>Polymers - chemistry</subject><subject>Proteins</subject><subject>Reverse osmosis</subject><subject>Self-assembly</subject><subject>Surface Properties</subject><subject>Transport properties</subject><subject>Ultrafiltration</subject><issn>1359-6640</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1PwzAMhiMEYmNw4Q6qxAUhFfLRJulxGgyQJnGBA6cqTV3UrWlK0h7278k-GBInW_Jj-_VrhC4JvieYZQ9aViXGOEnUERoTxpM4TTJ5vMnTLOY8wSN05v0yMDxUT9GIZpmgTGZj9DlzoPq6_Yq0s97HTd2uoIwaZaBplIuKxupVpG1nm7UBF_mh66zbNjRqDc5HlQ1UbU1toK91ZMAUTrXgz9FJpRoPF_s4QR_zp_fZS7x4e36dTRexZkz0McdKEiKxlKXOsJZMFIrKtCoJp5UgIGSaVLIitBS4wBkUoCkXiU5JqkLEbIJud3M7Z78H8H1uaq836luwg88p5glNMQ0HT9DNP3RpB9cGdTklhKZhr2CButtRW0ccVHnnaqPcOic43xiez-T8cWv4NMDX-5FDYaA8oL8OB-BqBzivD9W_j7EfqjiEmg</recordid><startdate>20180928</startdate><enddate>20180928</enddate><creator>Lang, Chao</creator><creator>Shen, Yue-xiao</creator><creator>LaNasa, Jacob A</creator><creator>Ye, Dan</creator><creator>Song, Woochul</creator><creator>Zimudzi, Tawanda J</creator><creator>Hickner, Michael A</creator><creator>Gomez, Enrique D</creator><creator>Gomez, Esther W</creator><creator>Kumar, Manish</creator><creator>Hickey, Robert J</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6808-7411</orcidid><orcidid>https://orcid.org/0000-0001-8212-4450</orcidid><orcidid>https://orcid.org/0000-0001-7847-9646</orcidid><orcidid>https://orcid.org/0000-0001-8942-4480</orcidid><orcidid>https://orcid.org/0000-0001-5545-3793</orcidid></search><sort><creationdate>20180928</creationdate><title>Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes</title><author>Lang, Chao ; Shen, Yue-xiao ; LaNasa, Jacob A ; Ye, Dan ; Song, Woochul ; Zimudzi, Tawanda J ; Hickner, Michael A ; Gomez, Enrique D ; Gomez, Esther W ; Kumar, Manish ; Hickey, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-60a8118088dc90c837ba285fd162f71e7854f8f12d70b09ebec2674c515a67403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biological properties</topic><topic>Biomimetic materials</topic><topic>Biomimetic Materials - chemistry</topic><topic>Block copolymers</topic><topic>Channels</topic><topic>Chemical synthesis</topic><topic>Cross-Linking Reagents - chemical synthesis</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Crosslinking</topic><topic>Domains</topic><topic>Ethylene oxide</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Isoprene</topic><topic>Lipid Bilayers - chemical synthesis</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Mechanical properties</topic><topic>Membrane structures</topic><topic>Membranes</topic><topic>Molecular Structure</topic><topic>Molecular weight</topic><topic>Nanofiltration</topic><topic>Particle Size</topic><topic>Polymers - chemical synthesis</topic><topic>Polymers - chemistry</topic><topic>Proteins</topic><topic>Reverse osmosis</topic><topic>Self-assembly</topic><topic>Surface Properties</topic><topic>Transport properties</topic><topic>Ultrafiltration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, Chao</creatorcontrib><creatorcontrib>Shen, Yue-xiao</creatorcontrib><creatorcontrib>LaNasa, Jacob A</creatorcontrib><creatorcontrib>Ye, Dan</creatorcontrib><creatorcontrib>Song, Woochul</creatorcontrib><creatorcontrib>Zimudzi, Tawanda J</creatorcontrib><creatorcontrib>Hickner, Michael A</creatorcontrib><creatorcontrib>Gomez, Enrique D</creatorcontrib><creatorcontrib>Gomez, Esther W</creatorcontrib><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Hickey, Robert J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lang, Chao</au><au>Shen, Yue-xiao</au><au>LaNasa, Jacob A</au><au>Ye, Dan</au><au>Song, Woochul</au><au>Zimudzi, Tawanda J</au><au>Hickner, Michael A</au><au>Gomez, Enrique D</au><au>Gomez, Esther W</au><au>Kumar, Manish</au><au>Hickey, Robert J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes</atitle><jtitle>Faraday discussions</jtitle><addtitle>Faraday Discuss</addtitle><date>2018-09-28</date><risdate>2018</risdate><volume>29</volume><spage>179</spage><epage>191</epage><pages>179-191</pages><issn>1359-6640</issn><eissn>1364-5498</eissn><abstract>The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous studies, we have shown that artificial water channels can have excellent water transport abilities that are comparable to biological water channel proteins, aquaporins. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes. Specifically, we synthesized an amphiphilic triblock copolymer, poly(isoprene)-
block
-poly(ethylene oxide)-
block
-poly(isoprene), which is a high molecular weight synthetic analog of naturally occurring lipids in terms of its self-assembled structure. This polymer was used to build stacked membranes composed of self-assembled lamellae. The resulting membranes resemble layers of natural lipid bilayers in living systems, but with superior mechanical properties suitable for real-world applications. The procedures used to synthesize the triblock copolymer resulted in membranes with increased stability due to the crosslinkability of the hydrophobic domains. Furthermore, the introduction of bridging hydrophilic domains leads to the preservation of the stacked membrane structure when the membrane is in contact with water, something that is challenging for diblock lamellae that tend to swell, and delaminate in aqueous solutions. This new method of membrane fabrication offers a practical model for making channel-based biomimetic membranes, which may lead to technological applications in reverse osmosis, nanofiltration, and ultrafiltration membranes.
In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29972389</pmid><doi>10.1039/c8fd00044a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6808-7411</orcidid><orcidid>https://orcid.org/0000-0001-8212-4450</orcidid><orcidid>https://orcid.org/0000-0001-7847-9646</orcidid><orcidid>https://orcid.org/0000-0001-8942-4480</orcidid><orcidid>https://orcid.org/0000-0001-5545-3793</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6640 |
ispartof | Faraday discussions, 2018-09, Vol.29, p.179-191 |
issn | 1359-6640 1364-5498 |
language | eng |
recordid | cdi_rsc_primary_c8fd00044a |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Biological properties Biomimetic materials Biomimetic Materials - chemistry Block copolymers Channels Chemical synthesis Cross-Linking Reagents - chemical synthesis Cross-Linking Reagents - chemistry Crosslinking Domains Ethylene oxide Hydrophobic and Hydrophilic Interactions Isoprene Lipid Bilayers - chemical synthesis Lipid Bilayers - chemistry Lipids Mechanical properties Membrane structures Membranes Molecular Structure Molecular weight Nanofiltration Particle Size Polymers - chemical synthesis Polymers - chemistry Proteins Reverse osmosis Self-assembly Surface Properties Transport properties Ultrafiltration |
title | Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creating%20cross-linked%20lamellar%20block%20copolymer%20supporting%20layers%20for%20biomimetic%20membranes&rft.jtitle=Faraday%20discussions&rft.au=Lang,%20Chao&rft.date=2018-09-28&rft.volume=29&rft.spage=179&rft.epage=191&rft.pages=179-191&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/10.1039/c8fd00044a&rft_dat=%3Cproquest_rsc_p%3E2064250272%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112528573&rft_id=info:pmid/29972389&rfr_iscdi=true |