Farming thermoelectric paperElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ee03112f

Waste heat to electricity conversion using thermoelectric generators is emerging as a key technology in the forthcoming energy scenario. Carbon-based composites could unleash the as yet untapped potential of thermoelectricity by combining the low cost, easy processability, and low thermal conductivi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Abol-Fotouh, Deyaa, Dörling, Bernhard, Zapata-Arteaga, Osnat, Rodríguez-Martínez, Xabier, Gómez, Andrés, Reparaz, J. Sebastian, Laromaine, Anna, Roig, Anna, Campoy-Quiles, Mariano
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 726
container_issue 2
container_start_page 716
container_title
container_volume 12
creator Abol-Fotouh, Deyaa
Dörling, Bernhard
Zapata-Arteaga, Osnat
Rodríguez-Martínez, Xabier
Gómez, Andrés
Reparaz, J. Sebastian
Laromaine, Anna
Roig, Anna
Campoy-Quiles, Mariano
description Waste heat to electricity conversion using thermoelectric generators is emerging as a key technology in the forthcoming energy scenario. Carbon-based composites could unleash the as yet untapped potential of thermoelectricity by combining the low cost, easy processability, and low thermal conductivity of biopolymers with the mechanical strength and good electrical properties of carbon nanotubes (CNTs). Here we use bacteria in environmentally friendly aqueous media to grow large area bacterial nanocellulose (BC) films with an embedded highly dispersed CNT network. The thick films ( 10 μm) exhibit tuneable transparency and colour, as well as low thermal and high electrical conductivity. Moreover, they are fully bendable, can conformally wrap around heat sources and are stable above 500 K, which expands the range of potential uses compared to typical conducting polymers and composites. The high porosity of the material facilitates effective n-type doping, enabling the fabrication of a thermoelectric module from farmed thermoelectric paper. Because of vertical phase separation of the CNTs in the BC composite, the grown films at the same time serve as both the active layer and separating layer, insulating each thermoelectric leg from the adjacent ones. Last but not least, the BC can be enzymatically decomposed, completely reclaiming the embedded CNTs. Bacteria are used to grow in an aqueous medium a cellulose-carbon nanotube composite porous film with good thermoelectric properties, flexibility and recyclability.
doi_str_mv 10.1039/c8ee03112f
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c8ee03112f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c8ee03112f</sourcerecordid><originalsourceid>FETCH-rsc_primary_c8ee03112f3</originalsourceid><addsrcrecordid>eNp9jj0LwjAYhIMo-Lm4C3HToZq02lpXbbGTg-4l1rcaSdKQVMF_bxXFQXC6O-54OIT6lEwo8cJptgAgHqVuXkMtGsxnzjwgfv3j_dBtora1F0J8lwRhC8mYGcnVCZdnMLIAAVlpeIY102CiVypUle1VawESVMnMHXOVF0aykhcKj6JdMsbsxrhgBwETvAPA622yxL-nuqiRM2Gh99YOGsTRfrVxjM1Sbbis4Ol37nXQ8F-f6uNz85_xAO_pVAo</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Farming thermoelectric paperElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ee03112f</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Abol-Fotouh, Deyaa ; Dörling, Bernhard ; Zapata-Arteaga, Osnat ; Rodríguez-Martínez, Xabier ; Gómez, Andrés ; Reparaz, J. Sebastian ; Laromaine, Anna ; Roig, Anna ; Campoy-Quiles, Mariano</creator><creatorcontrib>Abol-Fotouh, Deyaa ; Dörling, Bernhard ; Zapata-Arteaga, Osnat ; Rodríguez-Martínez, Xabier ; Gómez, Andrés ; Reparaz, J. Sebastian ; Laromaine, Anna ; Roig, Anna ; Campoy-Quiles, Mariano</creatorcontrib><description>Waste heat to electricity conversion using thermoelectric generators is emerging as a key technology in the forthcoming energy scenario. Carbon-based composites could unleash the as yet untapped potential of thermoelectricity by combining the low cost, easy processability, and low thermal conductivity of biopolymers with the mechanical strength and good electrical properties of carbon nanotubes (CNTs). Here we use bacteria in environmentally friendly aqueous media to grow large area bacterial nanocellulose (BC) films with an embedded highly dispersed CNT network. The thick films ( 10 μm) exhibit tuneable transparency and colour, as well as low thermal and high electrical conductivity. Moreover, they are fully bendable, can conformally wrap around heat sources and are stable above 500 K, which expands the range of potential uses compared to typical conducting polymers and composites. The high porosity of the material facilitates effective n-type doping, enabling the fabrication of a thermoelectric module from farmed thermoelectric paper. Because of vertical phase separation of the CNTs in the BC composite, the grown films at the same time serve as both the active layer and separating layer, insulating each thermoelectric leg from the adjacent ones. Last but not least, the BC can be enzymatically decomposed, completely reclaiming the embedded CNTs. Bacteria are used to grow in an aqueous medium a cellulose-carbon nanotube composite porous film with good thermoelectric properties, flexibility and recyclability.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c8ee03112f</identifier><language>eng</language><creationdate>2019-02</creationdate><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Abol-Fotouh, Deyaa</creatorcontrib><creatorcontrib>Dörling, Bernhard</creatorcontrib><creatorcontrib>Zapata-Arteaga, Osnat</creatorcontrib><creatorcontrib>Rodríguez-Martínez, Xabier</creatorcontrib><creatorcontrib>Gómez, Andrés</creatorcontrib><creatorcontrib>Reparaz, J. Sebastian</creatorcontrib><creatorcontrib>Laromaine, Anna</creatorcontrib><creatorcontrib>Roig, Anna</creatorcontrib><creatorcontrib>Campoy-Quiles, Mariano</creatorcontrib><title>Farming thermoelectric paperElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ee03112f</title><description>Waste heat to electricity conversion using thermoelectric generators is emerging as a key technology in the forthcoming energy scenario. Carbon-based composites could unleash the as yet untapped potential of thermoelectricity by combining the low cost, easy processability, and low thermal conductivity of biopolymers with the mechanical strength and good electrical properties of carbon nanotubes (CNTs). Here we use bacteria in environmentally friendly aqueous media to grow large area bacterial nanocellulose (BC) films with an embedded highly dispersed CNT network. The thick films ( 10 μm) exhibit tuneable transparency and colour, as well as low thermal and high electrical conductivity. Moreover, they are fully bendable, can conformally wrap around heat sources and are stable above 500 K, which expands the range of potential uses compared to typical conducting polymers and composites. The high porosity of the material facilitates effective n-type doping, enabling the fabrication of a thermoelectric module from farmed thermoelectric paper. Because of vertical phase separation of the CNTs in the BC composite, the grown films at the same time serve as both the active layer and separating layer, insulating each thermoelectric leg from the adjacent ones. Last but not least, the BC can be enzymatically decomposed, completely reclaiming the embedded CNTs. Bacteria are used to grow in an aqueous medium a cellulose-carbon nanotube composite porous film with good thermoelectric properties, flexibility and recyclability.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNp9jj0LwjAYhIMo-Lm4C3HToZq02lpXbbGTg-4l1rcaSdKQVMF_bxXFQXC6O-54OIT6lEwo8cJptgAgHqVuXkMtGsxnzjwgfv3j_dBtora1F0J8lwRhC8mYGcnVCZdnMLIAAVlpeIY102CiVypUle1VawESVMnMHXOVF0aykhcKj6JdMsbsxrhgBwETvAPA622yxL-nuqiRM2Gh99YOGsTRfrVxjM1Sbbis4Ol37nXQ8F-f6uNz85_xAO_pVAo</recordid><startdate>20190213</startdate><enddate>20190213</enddate><creator>Abol-Fotouh, Deyaa</creator><creator>Dörling, Bernhard</creator><creator>Zapata-Arteaga, Osnat</creator><creator>Rodríguez-Martínez, Xabier</creator><creator>Gómez, Andrés</creator><creator>Reparaz, J. Sebastian</creator><creator>Laromaine, Anna</creator><creator>Roig, Anna</creator><creator>Campoy-Quiles, Mariano</creator><scope/></search><sort><creationdate>20190213</creationdate><title>Farming thermoelectric paperElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ee03112f</title><author>Abol-Fotouh, Deyaa ; Dörling, Bernhard ; Zapata-Arteaga, Osnat ; Rodríguez-Martínez, Xabier ; Gómez, Andrés ; Reparaz, J. Sebastian ; Laromaine, Anna ; Roig, Anna ; Campoy-Quiles, Mariano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c8ee03112f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Abol-Fotouh, Deyaa</creatorcontrib><creatorcontrib>Dörling, Bernhard</creatorcontrib><creatorcontrib>Zapata-Arteaga, Osnat</creatorcontrib><creatorcontrib>Rodríguez-Martínez, Xabier</creatorcontrib><creatorcontrib>Gómez, Andrés</creatorcontrib><creatorcontrib>Reparaz, J. Sebastian</creatorcontrib><creatorcontrib>Laromaine, Anna</creatorcontrib><creatorcontrib>Roig, Anna</creatorcontrib><creatorcontrib>Campoy-Quiles, Mariano</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abol-Fotouh, Deyaa</au><au>Dörling, Bernhard</au><au>Zapata-Arteaga, Osnat</au><au>Rodríguez-Martínez, Xabier</au><au>Gómez, Andrés</au><au>Reparaz, J. Sebastian</au><au>Laromaine, Anna</au><au>Roig, Anna</au><au>Campoy-Quiles, Mariano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Farming thermoelectric paperElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ee03112f</atitle><date>2019-02-13</date><risdate>2019</risdate><volume>12</volume><issue>2</issue><spage>716</spage><epage>726</epage><pages>716-726</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Waste heat to electricity conversion using thermoelectric generators is emerging as a key technology in the forthcoming energy scenario. Carbon-based composites could unleash the as yet untapped potential of thermoelectricity by combining the low cost, easy processability, and low thermal conductivity of biopolymers with the mechanical strength and good electrical properties of carbon nanotubes (CNTs). Here we use bacteria in environmentally friendly aqueous media to grow large area bacterial nanocellulose (BC) films with an embedded highly dispersed CNT network. The thick films ( 10 μm) exhibit tuneable transparency and colour, as well as low thermal and high electrical conductivity. Moreover, they are fully bendable, can conformally wrap around heat sources and are stable above 500 K, which expands the range of potential uses compared to typical conducting polymers and composites. The high porosity of the material facilitates effective n-type doping, enabling the fabrication of a thermoelectric module from farmed thermoelectric paper. Because of vertical phase separation of the CNTs in the BC composite, the grown films at the same time serve as both the active layer and separating layer, insulating each thermoelectric leg from the adjacent ones. Last but not least, the BC can be enzymatically decomposed, completely reclaiming the embedded CNTs. Bacteria are used to grow in an aqueous medium a cellulose-carbon nanotube composite porous film with good thermoelectric properties, flexibility and recyclability.</abstract><doi>10.1039/c8ee03112f</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof
issn 1754-5692
1754-5706
language eng
recordid cdi_rsc_primary_c8ee03112f
source Royal Society Of Chemistry Journals 2008-
title Farming thermoelectric paperElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ee03112f
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Farming%20thermoelectric%20paperElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c8ee03112f&rft.au=Abol-Fotouh,%20Deyaa&rft.date=2019-02-13&rft.volume=12&rft.issue=2&rft.spage=716&rft.epage=726&rft.pages=716-726&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c8ee03112f&rft_dat=%3Crsc%3Ec8ee03112f%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true