Improving the capability of UiO-66 for Cr() adsorption from aqueous solutions by introducing isonicotinate -oxide as the functional group
Considering the widespread production of Cr( vi ) from various industrial processes and its damaging toxicity as a carcinogenic agent, it is imperative to investigate stable and efficient adsorbents with a rapid performance towards Cr( vi ) adsorption. Zirconium-containing metal-organic frameworks (...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2018-10, Vol.47 (41), p.14549-14555 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14555 |
---|---|
container_issue | 41 |
container_start_page | 14549 |
container_title | Dalton transactions : an international journal of inorganic chemistry |
container_volume | 47 |
creator | Shokouhfar, Nasrin Aboutorabi, Leila Morsali, Ali |
description | Considering the widespread production of Cr(
vi
) from various industrial processes and its damaging toxicity as a carcinogenic agent, it is imperative to investigate stable and efficient adsorbents with a rapid performance towards Cr(
vi
) adsorption. Zirconium-containing metal-organic frameworks (Zr-MOFs) have been recently used as environmentally friendly adsorbents for the reduction of metallic contaminants in aqueous media. Preparation from nontoxic metal sources, remarkable stabilities and distinguished physicochemical features, such as the high tendency of Zr-clusters to adsorb oxo-anions, beneficial structural defects, and modification of their properties
via
modulator synthesis, can be enumerated as the advantages of Zr-MOFs. In this study, we improved the adsorption capacity of UiO-66 as the most stable Zr-MOF for Cr(
vi
) adsorption from aqueous solutions through the gradual addition of an N-O functional group. This strategy ultimately led us to afford a new Zr-MOF structure (TMU-66) with a maximum Cr(
vi
) adsorption capacity of 60.241 mg g
−1
, which is 4 times the absorption capacity of UiO-66, and very fast kinetics ( |
doi_str_mv | 10.1039/c8dt03196g |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c8dt03196g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c8dt03196g</sourcerecordid><originalsourceid>FETCH-rsc_primary_c8dt03196g3</originalsourceid><addsrcrecordid>eNqFT7tOxDAQtBBIHI-GHmlLKAKOc-RIfQIdFQ3UJ59jh0WJN-zaiHwCf42CEJRUM5rRzGiUOiv1Vamr5trdtklXZVN3e2pRLlerojHVcv-Xm_pQHYm8am2MvjEL9fkwjEzvGDtILx6cHe0Oe0wTUIBnfCzqGgIxrPniEmwrxGNCihCYBrBv2VMWEOrzrArsJsCYmNrs5koUiugoYbTJQ0Ef2Hqw8j0VcnRzyPbQMeXxRB0E24s__cFjdX5_97TeFCxuOzIOlqft37_qP_8LE_VWNw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving the capability of UiO-66 for Cr() adsorption from aqueous solutions by introducing isonicotinate -oxide as the functional group</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Shokouhfar, Nasrin ; Aboutorabi, Leila ; Morsali, Ali</creator><creatorcontrib>Shokouhfar, Nasrin ; Aboutorabi, Leila ; Morsali, Ali</creatorcontrib><description>Considering the widespread production of Cr(
vi
) from various industrial processes and its damaging toxicity as a carcinogenic agent, it is imperative to investigate stable and efficient adsorbents with a rapid performance towards Cr(
vi
) adsorption. Zirconium-containing metal-organic frameworks (Zr-MOFs) have been recently used as environmentally friendly adsorbents for the reduction of metallic contaminants in aqueous media. Preparation from nontoxic metal sources, remarkable stabilities and distinguished physicochemical features, such as the high tendency of Zr-clusters to adsorb oxo-anions, beneficial structural defects, and modification of their properties
via
modulator synthesis, can be enumerated as the advantages of Zr-MOFs. In this study, we improved the adsorption capacity of UiO-66 as the most stable Zr-MOF for Cr(
vi
) adsorption from aqueous solutions through the gradual addition of an N-O functional group. This strategy ultimately led us to afford a new Zr-MOF structure (TMU-66) with a maximum Cr(
vi
) adsorption capacity of 60.241 mg g
−1
, which is 4 times the absorption capacity of UiO-66, and very fast kinetics (<3 min) that followed the pseudo-second-order kinetics. This study demonstrates that a conceptual design can be helpful in synthesizing safe and stable adsorbents with appropriate capacity and kinetics for adsorption.
In this study, we showed that a conceptual design can be helpful in synthesizing environmentally safe and stable adsorbents along with suitable adsorption parameters.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/c8dt03196g</identifier><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2018-10, Vol.47 (41), p.14549-14555</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shokouhfar, Nasrin</creatorcontrib><creatorcontrib>Aboutorabi, Leila</creatorcontrib><creatorcontrib>Morsali, Ali</creatorcontrib><title>Improving the capability of UiO-66 for Cr() adsorption from aqueous solutions by introducing isonicotinate -oxide as the functional group</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>Considering the widespread production of Cr(
vi
) from various industrial processes and its damaging toxicity as a carcinogenic agent, it is imperative to investigate stable and efficient adsorbents with a rapid performance towards Cr(
vi
) adsorption. Zirconium-containing metal-organic frameworks (Zr-MOFs) have been recently used as environmentally friendly adsorbents for the reduction of metallic contaminants in aqueous media. Preparation from nontoxic metal sources, remarkable stabilities and distinguished physicochemical features, such as the high tendency of Zr-clusters to adsorb oxo-anions, beneficial structural defects, and modification of their properties
via
modulator synthesis, can be enumerated as the advantages of Zr-MOFs. In this study, we improved the adsorption capacity of UiO-66 as the most stable Zr-MOF for Cr(
vi
) adsorption from aqueous solutions through the gradual addition of an N-O functional group. This strategy ultimately led us to afford a new Zr-MOF structure (TMU-66) with a maximum Cr(
vi
) adsorption capacity of 60.241 mg g
−1
, which is 4 times the absorption capacity of UiO-66, and very fast kinetics (<3 min) that followed the pseudo-second-order kinetics. This study demonstrates that a conceptual design can be helpful in synthesizing safe and stable adsorbents with appropriate capacity and kinetics for adsorption.
In this study, we showed that a conceptual design can be helpful in synthesizing environmentally safe and stable adsorbents along with suitable adsorption parameters.</description><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFT7tOxDAQtBBIHI-GHmlLKAKOc-RIfQIdFQ3UJ59jh0WJN-zaiHwCf42CEJRUM5rRzGiUOiv1Vamr5trdtklXZVN3e2pRLlerojHVcv-Xm_pQHYm8am2MvjEL9fkwjEzvGDtILx6cHe0Oe0wTUIBnfCzqGgIxrPniEmwrxGNCihCYBrBv2VMWEOrzrArsJsCYmNrs5koUiugoYbTJQ0Ef2Hqw8j0VcnRzyPbQMeXxRB0E24s__cFjdX5_97TeFCxuOzIOlqft37_qP_8LE_VWNw</recordid><startdate>20181023</startdate><enddate>20181023</enddate><creator>Shokouhfar, Nasrin</creator><creator>Aboutorabi, Leila</creator><creator>Morsali, Ali</creator><scope/></search><sort><creationdate>20181023</creationdate><title>Improving the capability of UiO-66 for Cr() adsorption from aqueous solutions by introducing isonicotinate -oxide as the functional group</title><author>Shokouhfar, Nasrin ; Aboutorabi, Leila ; Morsali, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c8dt03196g3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shokouhfar, Nasrin</creatorcontrib><creatorcontrib>Aboutorabi, Leila</creatorcontrib><creatorcontrib>Morsali, Ali</creatorcontrib><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shokouhfar, Nasrin</au><au>Aboutorabi, Leila</au><au>Morsali, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the capability of UiO-66 for Cr() adsorption from aqueous solutions by introducing isonicotinate -oxide as the functional group</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2018-10-23</date><risdate>2018</risdate><volume>47</volume><issue>41</issue><spage>14549</spage><epage>14555</epage><pages>14549-14555</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Considering the widespread production of Cr(
vi
) from various industrial processes and its damaging toxicity as a carcinogenic agent, it is imperative to investigate stable and efficient adsorbents with a rapid performance towards Cr(
vi
) adsorption. Zirconium-containing metal-organic frameworks (Zr-MOFs) have been recently used as environmentally friendly adsorbents for the reduction of metallic contaminants in aqueous media. Preparation from nontoxic metal sources, remarkable stabilities and distinguished physicochemical features, such as the high tendency of Zr-clusters to adsorb oxo-anions, beneficial structural defects, and modification of their properties
via
modulator synthesis, can be enumerated as the advantages of Zr-MOFs. In this study, we improved the adsorption capacity of UiO-66 as the most stable Zr-MOF for Cr(
vi
) adsorption from aqueous solutions through the gradual addition of an N-O functional group. This strategy ultimately led us to afford a new Zr-MOF structure (TMU-66) with a maximum Cr(
vi
) adsorption capacity of 60.241 mg g
−1
, which is 4 times the absorption capacity of UiO-66, and very fast kinetics (<3 min) that followed the pseudo-second-order kinetics. This study demonstrates that a conceptual design can be helpful in synthesizing safe and stable adsorbents with appropriate capacity and kinetics for adsorption.
In this study, we showed that a conceptual design can be helpful in synthesizing environmentally safe and stable adsorbents along with suitable adsorption parameters.</abstract><doi>10.1039/c8dt03196g</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9226 |
ispartof | Dalton transactions : an international journal of inorganic chemistry, 2018-10, Vol.47 (41), p.14549-14555 |
issn | 1477-9226 1477-9234 |
language | |
recordid | cdi_rsc_primary_c8dt03196g |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | Improving the capability of UiO-66 for Cr() adsorption from aqueous solutions by introducing isonicotinate -oxide as the functional group |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20capability%20of%20UiO-66%20for%20Cr()%20adsorption%20from%20aqueous%20solutions%20by%20introducing%20isonicotinate%20-oxide%20as%20the%20functional%20group&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Shokouhfar,%20Nasrin&rft.date=2018-10-23&rft.volume=47&rft.issue=41&rft.spage=14549&rft.epage=14555&rft.pages=14549-14555&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/c8dt03196g&rft_dat=%3Crsc%3Ec8dt03196g%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |