Ultrafast unidirectional chiral rotation in the - photoisomerization of two azoheteroarene photoswitches

Unidirectional rotation represents a very important functional feature in photochemistry, such as in the design of light-driven molecular rotary motors. Great attention has recently been devoted to the unidirectional preference of the torsional motion of azobenzene and other molecules. Azoheteroaren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2018-10, Vol.2 (4), p.2591-25917
Hauptverfasser: Pang, Xiaojuan, Jiang, Chenwei, Qi, Yongnan, Yuan, Ling, Hu, Deping, Zhang, Xiuxing, Zhao, Di, Wang, Dongdong, Lan, Zhenggang, Li, Fuli
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25917
container_issue 4
container_start_page 2591
container_title Physical chemistry chemical physics : PCCP
container_volume 2
creator Pang, Xiaojuan
Jiang, Chenwei
Qi, Yongnan
Yuan, Ling
Hu, Deping
Zhang, Xiuxing
Zhao, Di
Wang, Dongdong
Lan, Zhenggang
Li, Fuli
description Unidirectional rotation represents a very important functional feature in photochemistry, such as in the design of light-driven molecular rotary motors. Great attention has recently been devoted to the unidirectional preference of the torsional motion of azobenzene and other molecules. Azoheteroarenes offer functional advantages over their more conventional azobenzene counterparts due to the introduction of heteroaromatic rings. In this paper, the Z - E photoisomerization dynamics of two azoheteroarenes, 1,2-bis(1-methyl-1 H -imidazol-2-yl)diazene and 1,2-bis(1 H -imidazol-2-yl)diazene, are investigated with trajectory surface-hopping molecular dynamics at the semi-empirical OM2/MRCI level. Starting from the S 1 excited state of the M -helical Z -isomer of both azoheteroarenes, more than 99% of the trajectories decay to their ground states through the M -helical conical intersections by twisting about the central N&z.dbd;N double bond. This chiral path preference can be well understood by the energy profiles generated by the linear interpolation between the Franck-Condon geometry of the M -helical Z -isomer and the relevant S 1 /S 0 conical intersections. The Z - E photoisomerization mechanisms of these two azoheteroarenes display a higher preference for unidirectional rotary dynamics under a chiral path than their counterpart azobenzene. Based on a large number of trajectories starting from the Z -isomer, for both azoheteroarenes, more than 99% of the trajectories decay through conical intersections with the same helicities as their initial geometries.
doi_str_mv 10.1039/c8cp04762f
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c8cp04762f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c8cp04762f</sourcerecordid><originalsourceid>FETCH-rsc_primary_c8cp04762f3</originalsourceid><addsrcrecordid>eNqFjs0OAUEQhCdC4vfiLpkXWGbsWpyFeADOMhm9mZa1velpEZ4eIRydvkp9dSilhtaMrUmXE7_wtcnm-bRoqI7N8jRZmkXW_OZ53lbdGE_GGDuzaUeFfSnsChdFXyo8IoMXpMqV2gfkJ5jEvRqNlZYAOtF1ICGMdAbG-9tRoeVK2t0pgACTY6jgPYxXFB8g9lWrcGWEwYc9Ndqsd6ttwtEfasaz49vhdz_95x_8UEuo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrafast unidirectional chiral rotation in the - photoisomerization of two azoheteroarene photoswitches</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Pang, Xiaojuan ; Jiang, Chenwei ; Qi, Yongnan ; Yuan, Ling ; Hu, Deping ; Zhang, Xiuxing ; Zhao, Di ; Wang, Dongdong ; Lan, Zhenggang ; Li, Fuli</creator><creatorcontrib>Pang, Xiaojuan ; Jiang, Chenwei ; Qi, Yongnan ; Yuan, Ling ; Hu, Deping ; Zhang, Xiuxing ; Zhao, Di ; Wang, Dongdong ; Lan, Zhenggang ; Li, Fuli</creatorcontrib><description>Unidirectional rotation represents a very important functional feature in photochemistry, such as in the design of light-driven molecular rotary motors. Great attention has recently been devoted to the unidirectional preference of the torsional motion of azobenzene and other molecules. Azoheteroarenes offer functional advantages over their more conventional azobenzene counterparts due to the introduction of heteroaromatic rings. In this paper, the Z - E photoisomerization dynamics of two azoheteroarenes, 1,2-bis(1-methyl-1 H -imidazol-2-yl)diazene and 1,2-bis(1 H -imidazol-2-yl)diazene, are investigated with trajectory surface-hopping molecular dynamics at the semi-empirical OM2/MRCI level. Starting from the S 1 excited state of the M -helical Z -isomer of both azoheteroarenes, more than 99% of the trajectories decay to their ground states through the M -helical conical intersections by twisting about the central N&amp;z.dbd;N double bond. This chiral path preference can be well understood by the energy profiles generated by the linear interpolation between the Franck-Condon geometry of the M -helical Z -isomer and the relevant S 1 /S 0 conical intersections. The Z - E photoisomerization mechanisms of these two azoheteroarenes display a higher preference for unidirectional rotary dynamics under a chiral path than their counterpart azobenzene. Based on a large number of trajectories starting from the Z -isomer, for both azoheteroarenes, more than 99% of the trajectories decay through conical intersections with the same helicities as their initial geometries.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp04762f</identifier><ispartof>Physical chemistry chemical physics : PCCP, 2018-10, Vol.2 (4), p.2591-25917</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pang, Xiaojuan</creatorcontrib><creatorcontrib>Jiang, Chenwei</creatorcontrib><creatorcontrib>Qi, Yongnan</creatorcontrib><creatorcontrib>Yuan, Ling</creatorcontrib><creatorcontrib>Hu, Deping</creatorcontrib><creatorcontrib>Zhang, Xiuxing</creatorcontrib><creatorcontrib>Zhao, Di</creatorcontrib><creatorcontrib>Wang, Dongdong</creatorcontrib><creatorcontrib>Lan, Zhenggang</creatorcontrib><creatorcontrib>Li, Fuli</creatorcontrib><title>Ultrafast unidirectional chiral rotation in the - photoisomerization of two azoheteroarene photoswitches</title><title>Physical chemistry chemical physics : PCCP</title><description>Unidirectional rotation represents a very important functional feature in photochemistry, such as in the design of light-driven molecular rotary motors. Great attention has recently been devoted to the unidirectional preference of the torsional motion of azobenzene and other molecules. Azoheteroarenes offer functional advantages over their more conventional azobenzene counterparts due to the introduction of heteroaromatic rings. In this paper, the Z - E photoisomerization dynamics of two azoheteroarenes, 1,2-bis(1-methyl-1 H -imidazol-2-yl)diazene and 1,2-bis(1 H -imidazol-2-yl)diazene, are investigated with trajectory surface-hopping molecular dynamics at the semi-empirical OM2/MRCI level. Starting from the S 1 excited state of the M -helical Z -isomer of both azoheteroarenes, more than 99% of the trajectories decay to their ground states through the M -helical conical intersections by twisting about the central N&amp;z.dbd;N double bond. This chiral path preference can be well understood by the energy profiles generated by the linear interpolation between the Franck-Condon geometry of the M -helical Z -isomer and the relevant S 1 /S 0 conical intersections. The Z - E photoisomerization mechanisms of these two azoheteroarenes display a higher preference for unidirectional rotary dynamics under a chiral path than their counterpart azobenzene. Based on a large number of trajectories starting from the Z -isomer, for both azoheteroarenes, more than 99% of the trajectories decay through conical intersections with the same helicities as their initial geometries.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjs0OAUEQhCdC4vfiLpkXWGbsWpyFeADOMhm9mZa1velpEZ4eIRydvkp9dSilhtaMrUmXE7_wtcnm-bRoqI7N8jRZmkXW_OZ53lbdGE_GGDuzaUeFfSnsChdFXyo8IoMXpMqV2gfkJ5jEvRqNlZYAOtF1ICGMdAbG-9tRoeVK2t0pgACTY6jgPYxXFB8g9lWrcGWEwYc9Ndqsd6ttwtEfasaz49vhdz_95x_8UEuo</recordid><startdate>20181017</startdate><enddate>20181017</enddate><creator>Pang, Xiaojuan</creator><creator>Jiang, Chenwei</creator><creator>Qi, Yongnan</creator><creator>Yuan, Ling</creator><creator>Hu, Deping</creator><creator>Zhang, Xiuxing</creator><creator>Zhao, Di</creator><creator>Wang, Dongdong</creator><creator>Lan, Zhenggang</creator><creator>Li, Fuli</creator><scope/></search><sort><creationdate>20181017</creationdate><title>Ultrafast unidirectional chiral rotation in the - photoisomerization of two azoheteroarene photoswitches</title><author>Pang, Xiaojuan ; Jiang, Chenwei ; Qi, Yongnan ; Yuan, Ling ; Hu, Deping ; Zhang, Xiuxing ; Zhao, Di ; Wang, Dongdong ; Lan, Zhenggang ; Li, Fuli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c8cp04762f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Xiaojuan</creatorcontrib><creatorcontrib>Jiang, Chenwei</creatorcontrib><creatorcontrib>Qi, Yongnan</creatorcontrib><creatorcontrib>Yuan, Ling</creatorcontrib><creatorcontrib>Hu, Deping</creatorcontrib><creatorcontrib>Zhang, Xiuxing</creatorcontrib><creatorcontrib>Zhao, Di</creatorcontrib><creatorcontrib>Wang, Dongdong</creatorcontrib><creatorcontrib>Lan, Zhenggang</creatorcontrib><creatorcontrib>Li, Fuli</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Xiaojuan</au><au>Jiang, Chenwei</au><au>Qi, Yongnan</au><au>Yuan, Ling</au><au>Hu, Deping</au><au>Zhang, Xiuxing</au><au>Zhao, Di</au><au>Wang, Dongdong</au><au>Lan, Zhenggang</au><au>Li, Fuli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast unidirectional chiral rotation in the - photoisomerization of two azoheteroarene photoswitches</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2018-10-17</date><risdate>2018</risdate><volume>2</volume><issue>4</issue><spage>2591</spage><epage>25917</epage><pages>2591-25917</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Unidirectional rotation represents a very important functional feature in photochemistry, such as in the design of light-driven molecular rotary motors. Great attention has recently been devoted to the unidirectional preference of the torsional motion of azobenzene and other molecules. Azoheteroarenes offer functional advantages over their more conventional azobenzene counterparts due to the introduction of heteroaromatic rings. In this paper, the Z - E photoisomerization dynamics of two azoheteroarenes, 1,2-bis(1-methyl-1 H -imidazol-2-yl)diazene and 1,2-bis(1 H -imidazol-2-yl)diazene, are investigated with trajectory surface-hopping molecular dynamics at the semi-empirical OM2/MRCI level. Starting from the S 1 excited state of the M -helical Z -isomer of both azoheteroarenes, more than 99% of the trajectories decay to their ground states through the M -helical conical intersections by twisting about the central N&amp;z.dbd;N double bond. This chiral path preference can be well understood by the energy profiles generated by the linear interpolation between the Franck-Condon geometry of the M -helical Z -isomer and the relevant S 1 /S 0 conical intersections. The Z - E photoisomerization mechanisms of these two azoheteroarenes display a higher preference for unidirectional rotary dynamics under a chiral path than their counterpart azobenzene. Based on a large number of trajectories starting from the Z -isomer, for both azoheteroarenes, more than 99% of the trajectories decay through conical intersections with the same helicities as their initial geometries.</abstract><doi>10.1039/c8cp04762f</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2018-10, Vol.2 (4), p.2591-25917
issn 1463-9076
1463-9084
language
recordid cdi_rsc_primary_c8cp04762f
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Ultrafast unidirectional chiral rotation in the - photoisomerization of two azoheteroarene photoswitches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20unidirectional%20chiral%20rotation%20in%20the%20-%20photoisomerization%20of%20two%20azoheteroarene%20photoswitches&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Pang,%20Xiaojuan&rft.date=2018-10-17&rft.volume=2&rft.issue=4&rft.spage=2591&rft.epage=25917&rft.pages=2591-25917&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp04762f&rft_dat=%3Crsc%3Ec8cp04762f%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true