Properties that rank protein:protein docking poses with high accuracy

The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery. In this study, we assessed the capacity of the interfacial area of protein:protein com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2018, Vol.2 (32), p.2927-2942
Hauptverfasser: Simões, Inês C. M, Coimbra, João T. S, Neves, Rui P. P, Costa, Inês P. D, Ramos, Maria J, Fernandes, Pedro A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2942
container_issue 32
container_start_page 2927
container_title Physical chemistry chemical physics : PCCP
container_volume 2
creator Simões, Inês C. M
Coimbra, João T. S
Neves, Rui P. P
Costa, Inês P. D
Ramos, Maria J
Fernandes, Pedro A
description The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery. In this study, we assessed the capacity of the interfacial area of protein:protein complexes and of Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA)-derived properties, to rank docking poses. We used a set of 48 protein:protein complexes, and a total of 67 docking experiments distributed among bound:bound, bound:unbound, and unbound:unbound test cases. The MM-PBSA binding free energy of protein monomers has been shown to be very convenient to predict high-quality structures with a high success rate. In fact, considering solely the top-ranked pose of more than 200 docking solutions of each of 39 protein:protein complexes, the success rate was 77% in the prediction of high-quality poses, or 90% if considering high- or medium-quality poses. If considering high- or medium-quality poses as the top-one prediction, a success rate of 87% was obtained for a scoring scheme based on computational alanine scanning mutagenesis data. Such ranking accuracy highlights the ability of these properties to predict near-native poses in protein:protein docking. The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery.
doi_str_mv 10.1039/c8cp03888k
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8cp03888k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088283038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-579e95fe495476e8b59581fa562298623946302865d03a3f6824cc8cda3723133</originalsourceid><addsrcrecordid>eNpFkE1PwzAMhiMEYmNw4Q6qxA2pkMRN6nBD1fgQk9gBzlWWpls31pakFdq_J7AxTrbkR6_th5BzRm8YBXVr0LQUEHF1QIYskRArisnhvk_lgJx4v6SUMsHgmAyAUplyiUMynrqmta6rrI-6he4ip-tV1Lqms1V9t6tR0ZhVVc-jtvGB-6q6RbSo5otIG9M7bTan5KjUH96e7eqIvD-M37KnePL6-JzdT2IDadLFIlVWidImSiSptDgTSiArtZCcK5QcVDiYcpSioKChlMgTE74rNKQcGMCIXG1zw2GfvfVdvmx6V4eVOaeIHCF4CNT1ljKu8d7ZMm9dtdZukzOa_xjLM8ymv8ZeAny5i-xna1vs0T9FAbjYAs6b_fRfOXwDYzhubg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088283038</pqid></control><display><type>article</type><title>Properties that rank protein:protein docking poses with high accuracy</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Simões, Inês C. M ; Coimbra, João T. S ; Neves, Rui P. P ; Costa, Inês P. D ; Ramos, Maria J ; Fernandes, Pedro A</creator><creatorcontrib>Simões, Inês C. M ; Coimbra, João T. S ; Neves, Rui P. P ; Costa, Inês P. D ; Ramos, Maria J ; Fernandes, Pedro A</creatorcontrib><description>The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery. In this study, we assessed the capacity of the interfacial area of protein:protein complexes and of Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA)-derived properties, to rank docking poses. We used a set of 48 protein:protein complexes, and a total of 67 docking experiments distributed among bound:bound, bound:unbound, and unbound:unbound test cases. The MM-PBSA binding free energy of protein monomers has been shown to be very convenient to predict high-quality structures with a high success rate. In fact, considering solely the top-ranked pose of more than 200 docking solutions of each of 39 protein:protein complexes, the success rate was 77% in the prediction of high-quality poses, or 90% if considering high- or medium-quality poses. If considering high- or medium-quality poses as the top-one prediction, a success rate of 87% was obtained for a scoring scheme based on computational alanine scanning mutagenesis data. Such ranking accuracy highlights the ability of these properties to predict near-native poses in protein:protein docking. The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp03888k</identifier><identifier>PMID: 30067268</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Alanine ; Algorithms ; Binding Sites ; Docking ; Free energy ; Molecular biology ; Molecular Docking Simulation ; Monomers ; Properties (attributes) ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Proteins ; Proteins - chemistry ; Success ; Thermodynamics ; Yeast</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018, Vol.2 (32), p.2927-2942</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-579e95fe495476e8b59581fa562298623946302865d03a3f6824cc8cda3723133</citedby><cites>FETCH-LOGICAL-c374t-579e95fe495476e8b59581fa562298623946302865d03a3f6824cc8cda3723133</cites><orcidid>0000-0001-9138-7498 ; 0000-0003-2032-9308 ; 0000-0003-2748-4722 ; 0000-0002-9701-9431 ; 0000-0002-7554-8324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30067268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simões, Inês C. M</creatorcontrib><creatorcontrib>Coimbra, João T. S</creatorcontrib><creatorcontrib>Neves, Rui P. P</creatorcontrib><creatorcontrib>Costa, Inês P. D</creatorcontrib><creatorcontrib>Ramos, Maria J</creatorcontrib><creatorcontrib>Fernandes, Pedro A</creatorcontrib><title>Properties that rank protein:protein docking poses with high accuracy</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery. In this study, we assessed the capacity of the interfacial area of protein:protein complexes and of Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA)-derived properties, to rank docking poses. We used a set of 48 protein:protein complexes, and a total of 67 docking experiments distributed among bound:bound, bound:unbound, and unbound:unbound test cases. The MM-PBSA binding free energy of protein monomers has been shown to be very convenient to predict high-quality structures with a high success rate. In fact, considering solely the top-ranked pose of more than 200 docking solutions of each of 39 protein:protein complexes, the success rate was 77% in the prediction of high-quality poses, or 90% if considering high- or medium-quality poses. If considering high- or medium-quality poses as the top-one prediction, a success rate of 87% was obtained for a scoring scheme based on computational alanine scanning mutagenesis data. Such ranking accuracy highlights the ability of these properties to predict near-native poses in protein:protein docking. The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery.</description><subject>Alanine</subject><subject>Algorithms</subject><subject>Binding Sites</subject><subject>Docking</subject><subject>Free energy</subject><subject>Molecular biology</subject><subject>Molecular Docking Simulation</subject><subject>Monomers</subject><subject>Properties (attributes)</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Success</subject><subject>Thermodynamics</subject><subject>Yeast</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1PwzAMhiMEYmNw4Q6qxA2pkMRN6nBD1fgQk9gBzlWWpls31pakFdq_J7AxTrbkR6_th5BzRm8YBXVr0LQUEHF1QIYskRArisnhvk_lgJx4v6SUMsHgmAyAUplyiUMynrqmta6rrI-6he4ip-tV1Lqms1V9t6tR0ZhVVc-jtvGB-6q6RbSo5otIG9M7bTan5KjUH96e7eqIvD-M37KnePL6-JzdT2IDadLFIlVWidImSiSptDgTSiArtZCcK5QcVDiYcpSioKChlMgTE74rNKQcGMCIXG1zw2GfvfVdvmx6V4eVOaeIHCF4CNT1ljKu8d7ZMm9dtdZukzOa_xjLM8ymv8ZeAny5i-xna1vs0T9FAbjYAs6b_fRfOXwDYzhubg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Simões, Inês C. M</creator><creator>Coimbra, João T. S</creator><creator>Neves, Rui P. P</creator><creator>Costa, Inês P. D</creator><creator>Ramos, Maria J</creator><creator>Fernandes, Pedro A</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9138-7498</orcidid><orcidid>https://orcid.org/0000-0003-2032-9308</orcidid><orcidid>https://orcid.org/0000-0003-2748-4722</orcidid><orcidid>https://orcid.org/0000-0002-9701-9431</orcidid><orcidid>https://orcid.org/0000-0002-7554-8324</orcidid></search><sort><creationdate>2018</creationdate><title>Properties that rank protein:protein docking poses with high accuracy</title><author>Simões, Inês C. M ; Coimbra, João T. S ; Neves, Rui P. P ; Costa, Inês P. D ; Ramos, Maria J ; Fernandes, Pedro A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-579e95fe495476e8b59581fa562298623946302865d03a3f6824cc8cda3723133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alanine</topic><topic>Algorithms</topic><topic>Binding Sites</topic><topic>Docking</topic><topic>Free energy</topic><topic>Molecular biology</topic><topic>Molecular Docking Simulation</topic><topic>Monomers</topic><topic>Properties (attributes)</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Success</topic><topic>Thermodynamics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simões, Inês C. M</creatorcontrib><creatorcontrib>Coimbra, João T. S</creatorcontrib><creatorcontrib>Neves, Rui P. P</creatorcontrib><creatorcontrib>Costa, Inês P. D</creatorcontrib><creatorcontrib>Ramos, Maria J</creatorcontrib><creatorcontrib>Fernandes, Pedro A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simões, Inês C. M</au><au>Coimbra, João T. S</au><au>Neves, Rui P. P</au><au>Costa, Inês P. D</au><au>Ramos, Maria J</au><au>Fernandes, Pedro A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties that rank protein:protein docking poses with high accuracy</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018</date><risdate>2018</risdate><volume>2</volume><issue>32</issue><spage>2927</spage><epage>2942</epage><pages>2927-2942</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery. In this study, we assessed the capacity of the interfacial area of protein:protein complexes and of Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA)-derived properties, to rank docking poses. We used a set of 48 protein:protein complexes, and a total of 67 docking experiments distributed among bound:bound, bound:unbound, and unbound:unbound test cases. The MM-PBSA binding free energy of protein monomers has been shown to be very convenient to predict high-quality structures with a high success rate. In fact, considering solely the top-ranked pose of more than 200 docking solutions of each of 39 protein:protein complexes, the success rate was 77% in the prediction of high-quality poses, or 90% if considering high- or medium-quality poses. If considering high- or medium-quality poses as the top-one prediction, a success rate of 87% was obtained for a scoring scheme based on computational alanine scanning mutagenesis data. Such ranking accuracy highlights the ability of these properties to predict near-native poses in protein:protein docking. The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30067268</pmid><doi>10.1039/c8cp03888k</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9138-7498</orcidid><orcidid>https://orcid.org/0000-0003-2032-9308</orcidid><orcidid>https://orcid.org/0000-0003-2748-4722</orcidid><orcidid>https://orcid.org/0000-0002-9701-9431</orcidid><orcidid>https://orcid.org/0000-0002-7554-8324</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2018, Vol.2 (32), p.2927-2942
issn 1463-9076
1463-9084
language eng
recordid cdi_rsc_primary_c8cp03888k
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Alanine
Algorithms
Binding Sites
Docking
Free energy
Molecular biology
Molecular Docking Simulation
Monomers
Properties (attributes)
Protein Binding
Protein Conformation
Protein Multimerization
Proteins
Proteins - chemistry
Success
Thermodynamics
Yeast
title Properties that rank protein:protein docking poses with high accuracy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20that%20rank%20protein:protein%20docking%20poses%20with%20high%20accuracy&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Sim%C3%B5es,%20In%C3%AAs%20C.%20M&rft.date=2018&rft.volume=2&rft.issue=32&rft.spage=2927&rft.epage=2942&rft.pages=2927-2942&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp03888k&rft_dat=%3Cproquest_rsc_p%3E2088283038%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088283038&rft_id=info:pmid/30067268&rfr_iscdi=true