Properties that rank protein:protein docking poses with high accuracy
The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery. In this study, we assessed the capacity of the interfacial area of protein:protein com...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2018, Vol.2 (32), p.2927-2942 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2942 |
---|---|
container_issue | 32 |
container_start_page | 2927 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 2 |
creator | Simões, Inês C. M Coimbra, João T. S Neves, Rui P. P Costa, Inês P. D Ramos, Maria J Fernandes, Pedro A |
description | The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery. In this study, we assessed the capacity of the interfacial area of protein:protein complexes and of Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA)-derived properties, to rank docking poses. We used a set of 48 protein:protein complexes, and a total of 67 docking experiments distributed among bound:bound, bound:unbound, and unbound:unbound test cases. The MM-PBSA binding free energy of protein monomers has been shown to be very convenient to predict high-quality structures with a high success rate. In fact, considering solely the top-ranked pose of more than 200 docking solutions of each of 39 protein:protein complexes, the success rate was 77% in the prediction of high-quality poses, or 90% if considering high- or medium-quality poses. If considering high- or medium-quality poses as the top-one prediction, a success rate of 87% was obtained for a scoring scheme based on computational alanine scanning mutagenesis data. Such ranking accuracy highlights the ability of these properties to predict near-native poses in protein:protein docking.
The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery. |
doi_str_mv | 10.1039/c8cp03888k |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8cp03888k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088283038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-579e95fe495476e8b59581fa562298623946302865d03a3f6824cc8cda3723133</originalsourceid><addsrcrecordid>eNpFkE1PwzAMhiMEYmNw4Q6qxA2pkMRN6nBD1fgQk9gBzlWWpls31pakFdq_J7AxTrbkR6_th5BzRm8YBXVr0LQUEHF1QIYskRArisnhvk_lgJx4v6SUMsHgmAyAUplyiUMynrqmta6rrI-6he4ip-tV1Lqms1V9t6tR0ZhVVc-jtvGB-6q6RbSo5otIG9M7bTan5KjUH96e7eqIvD-M37KnePL6-JzdT2IDadLFIlVWidImSiSptDgTSiArtZCcK5QcVDiYcpSioKChlMgTE74rNKQcGMCIXG1zw2GfvfVdvmx6V4eVOaeIHCF4CNT1ljKu8d7ZMm9dtdZukzOa_xjLM8ymv8ZeAny5i-xna1vs0T9FAbjYAs6b_fRfOXwDYzhubg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088283038</pqid></control><display><type>article</type><title>Properties that rank protein:protein docking poses with high accuracy</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Simões, Inês C. M ; Coimbra, João T. S ; Neves, Rui P. P ; Costa, Inês P. D ; Ramos, Maria J ; Fernandes, Pedro A</creator><creatorcontrib>Simões, Inês C. M ; Coimbra, João T. S ; Neves, Rui P. P ; Costa, Inês P. D ; Ramos, Maria J ; Fernandes, Pedro A</creatorcontrib><description>The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery. In this study, we assessed the capacity of the interfacial area of protein:protein complexes and of Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA)-derived properties, to rank docking poses. We used a set of 48 protein:protein complexes, and a total of 67 docking experiments distributed among bound:bound, bound:unbound, and unbound:unbound test cases. The MM-PBSA binding free energy of protein monomers has been shown to be very convenient to predict high-quality structures with a high success rate. In fact, considering solely the top-ranked pose of more than 200 docking solutions of each of 39 protein:protein complexes, the success rate was 77% in the prediction of high-quality poses, or 90% if considering high- or medium-quality poses. If considering high- or medium-quality poses as the top-one prediction, a success rate of 87% was obtained for a scoring scheme based on computational alanine scanning mutagenesis data. Such ranking accuracy highlights the ability of these properties to predict near-native poses in protein:protein docking.
The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp03888k</identifier><identifier>PMID: 30067268</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Alanine ; Algorithms ; Binding Sites ; Docking ; Free energy ; Molecular biology ; Molecular Docking Simulation ; Monomers ; Properties (attributes) ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Proteins ; Proteins - chemistry ; Success ; Thermodynamics ; Yeast</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018, Vol.2 (32), p.2927-2942</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-579e95fe495476e8b59581fa562298623946302865d03a3f6824cc8cda3723133</citedby><cites>FETCH-LOGICAL-c374t-579e95fe495476e8b59581fa562298623946302865d03a3f6824cc8cda3723133</cites><orcidid>0000-0001-9138-7498 ; 0000-0003-2032-9308 ; 0000-0003-2748-4722 ; 0000-0002-9701-9431 ; 0000-0002-7554-8324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30067268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simões, Inês C. M</creatorcontrib><creatorcontrib>Coimbra, João T. S</creatorcontrib><creatorcontrib>Neves, Rui P. P</creatorcontrib><creatorcontrib>Costa, Inês P. D</creatorcontrib><creatorcontrib>Ramos, Maria J</creatorcontrib><creatorcontrib>Fernandes, Pedro A</creatorcontrib><title>Properties that rank protein:protein docking poses with high accuracy</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery. In this study, we assessed the capacity of the interfacial area of protein:protein complexes and of Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA)-derived properties, to rank docking poses. We used a set of 48 protein:protein complexes, and a total of 67 docking experiments distributed among bound:bound, bound:unbound, and unbound:unbound test cases. The MM-PBSA binding free energy of protein monomers has been shown to be very convenient to predict high-quality structures with a high success rate. In fact, considering solely the top-ranked pose of more than 200 docking solutions of each of 39 protein:protein complexes, the success rate was 77% in the prediction of high-quality poses, or 90% if considering high- or medium-quality poses. If considering high- or medium-quality poses as the top-one prediction, a success rate of 87% was obtained for a scoring scheme based on computational alanine scanning mutagenesis data. Such ranking accuracy highlights the ability of these properties to predict near-native poses in protein:protein docking.
The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery.</description><subject>Alanine</subject><subject>Algorithms</subject><subject>Binding Sites</subject><subject>Docking</subject><subject>Free energy</subject><subject>Molecular biology</subject><subject>Molecular Docking Simulation</subject><subject>Monomers</subject><subject>Properties (attributes)</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Success</subject><subject>Thermodynamics</subject><subject>Yeast</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1PwzAMhiMEYmNw4Q6qxA2pkMRN6nBD1fgQk9gBzlWWpls31pakFdq_J7AxTrbkR6_th5BzRm8YBXVr0LQUEHF1QIYskRArisnhvk_lgJx4v6SUMsHgmAyAUplyiUMynrqmta6rrI-6he4ip-tV1Lqms1V9t6tR0ZhVVc-jtvGB-6q6RbSo5otIG9M7bTan5KjUH96e7eqIvD-M37KnePL6-JzdT2IDadLFIlVWidImSiSptDgTSiArtZCcK5QcVDiYcpSioKChlMgTE74rNKQcGMCIXG1zw2GfvfVdvmx6V4eVOaeIHCF4CNT1ljKu8d7ZMm9dtdZukzOa_xjLM8ymv8ZeAny5i-xna1vs0T9FAbjYAs6b_fRfOXwDYzhubg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Simões, Inês C. M</creator><creator>Coimbra, João T. S</creator><creator>Neves, Rui P. P</creator><creator>Costa, Inês P. D</creator><creator>Ramos, Maria J</creator><creator>Fernandes, Pedro A</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9138-7498</orcidid><orcidid>https://orcid.org/0000-0003-2032-9308</orcidid><orcidid>https://orcid.org/0000-0003-2748-4722</orcidid><orcidid>https://orcid.org/0000-0002-9701-9431</orcidid><orcidid>https://orcid.org/0000-0002-7554-8324</orcidid></search><sort><creationdate>2018</creationdate><title>Properties that rank protein:protein docking poses with high accuracy</title><author>Simões, Inês C. M ; Coimbra, João T. S ; Neves, Rui P. P ; Costa, Inês P. D ; Ramos, Maria J ; Fernandes, Pedro A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-579e95fe495476e8b59581fa562298623946302865d03a3f6824cc8cda3723133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alanine</topic><topic>Algorithms</topic><topic>Binding Sites</topic><topic>Docking</topic><topic>Free energy</topic><topic>Molecular biology</topic><topic>Molecular Docking Simulation</topic><topic>Monomers</topic><topic>Properties (attributes)</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Success</topic><topic>Thermodynamics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simões, Inês C. M</creatorcontrib><creatorcontrib>Coimbra, João T. S</creatorcontrib><creatorcontrib>Neves, Rui P. P</creatorcontrib><creatorcontrib>Costa, Inês P. D</creatorcontrib><creatorcontrib>Ramos, Maria J</creatorcontrib><creatorcontrib>Fernandes, Pedro A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simões, Inês C. M</au><au>Coimbra, João T. S</au><au>Neves, Rui P. P</au><au>Costa, Inês P. D</au><au>Ramos, Maria J</au><au>Fernandes, Pedro A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties that rank protein:protein docking poses with high accuracy</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018</date><risdate>2018</risdate><volume>2</volume><issue>32</issue><spage>2927</spage><epage>2942</epage><pages>2927-2942</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery. In this study, we assessed the capacity of the interfacial area of protein:protein complexes and of Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA)-derived properties, to rank docking poses. We used a set of 48 protein:protein complexes, and a total of 67 docking experiments distributed among bound:bound, bound:unbound, and unbound:unbound test cases. The MM-PBSA binding free energy of protein monomers has been shown to be very convenient to predict high-quality structures with a high success rate. In fact, considering solely the top-ranked pose of more than 200 docking solutions of each of 39 protein:protein complexes, the success rate was 77% in the prediction of high-quality poses, or 90% if considering high- or medium-quality poses. If considering high- or medium-quality poses as the top-one prediction, a success rate of 87% was obtained for a scoring scheme based on computational alanine scanning mutagenesis data. Such ranking accuracy highlights the ability of these properties to predict near-native poses in protein:protein docking.
The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30067268</pmid><doi>10.1039/c8cp03888k</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9138-7498</orcidid><orcidid>https://orcid.org/0000-0003-2032-9308</orcidid><orcidid>https://orcid.org/0000-0003-2748-4722</orcidid><orcidid>https://orcid.org/0000-0002-9701-9431</orcidid><orcidid>https://orcid.org/0000-0002-7554-8324</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2018, Vol.2 (32), p.2927-2942 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_rsc_primary_c8cp03888k |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Alanine Algorithms Binding Sites Docking Free energy Molecular biology Molecular Docking Simulation Monomers Properties (attributes) Protein Binding Protein Conformation Protein Multimerization Proteins Proteins - chemistry Success Thermodynamics Yeast |
title | Properties that rank protein:protein docking poses with high accuracy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20that%20rank%20protein:protein%20docking%20poses%20with%20high%20accuracy&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Sim%C3%B5es,%20In%C3%AAs%20C.%20M&rft.date=2018&rft.volume=2&rft.issue=32&rft.spage=2927&rft.epage=2942&rft.pages=2927-2942&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp03888k&rft_dat=%3Cproquest_rsc_p%3E2088283038%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2088283038&rft_id=info:pmid/30067268&rfr_iscdi=true |