Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy
The solvated electron in CH 3 CN is scavenged by CO 2 with a rate constant of 3.2 × 10 10 M −1 s −1 to produce the carbon dioxide radical anion (CO 2 &z.rad; − ), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2018, Vol.2 (15), p.111-117 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | 15 |
container_start_page | 111 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 2 |
creator | Grills, David C Lymar, Sergei V |
description | The solvated electron in CH
3
CN is scavenged by CO
2
with a rate constant of 3.2 × 10
10
M
−1
s
−1
to produce the carbon dioxide radical anion (CO
2
&z.rad;
−
), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm
−1
corresponding to the antisymmetric CO
2
&z.rad;
−
stretch. This assignment is confirmed by
13
C isotopic labelling experiments and DFT calculations. In neat CH
3
CN, CO
2
&z.rad;
−
decays on a ∼10 μs time scale
via
recombination with solvent-derived radicals (R&z.rad;) and solvated protons. Upon addition of formate (HCO
2
−
), the radiation yield of CO
2
&z.rad;
−
is substantially increased due to H-atom abstraction by R&z.rad; from HCO
2
−
(R&z.rad; + HCO
2
−
→ RH + CO
2
&z.rad;
−
), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN&z.rad;, CH
3
&z.rad;, and possibly, H&z.rad; primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH
2
CN&z.rad;. The removal of solvent radicals by HCO
2
−
also results in over a hundredfold increase in the CO
2
&z.rad;
−
lifetime. CO
2
&z.rad;
−
scavenging experiments suggest that at 50 mM HCO
2
−
, about 60% of the solvent-derived radicals are engaged in CO
2
&z.rad;
−
generation. Even under CO
2
saturation, no formation of the radical adduct, (CO
2
)
2
&z.rad;
−
, could be detected on the microsecond time scale.
First IR detection of CO
2
&z.rad;
−
in acetonitrile, produced by radiation-induced CO
2
reduction and oxidation of formate. |
doi_str_mv | 10.1039/c8cp00977e |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8cp00977e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2022130900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-badab41fb0cfa635b066ff1adad28d076f4d7af95f86887e5838174e64337bd73</originalsourceid><addsrcrecordid>eNpd0d9LHDEQB_BQLGqtL74roX0phWsnm-wm-yiHtoLQIu3zkk0mGNlL1iQnvf--Oc-e0Kf8mA_DDF9Czhh8YcD7r0aZGaCXEt-QYyY6vuhBiYP9XXZH5F3ODwDAWsYPyVHTdw2wRh6TcKetj9OmeENdTCtdfAw0OlrukRqdxvqq4I-3SFOlRk9Uh63xgWqDJQZfkp9qFZ9QT2jpuKEl6ZA9hkJv7mie0ZQUs4nz5j156_SU8fTlPCG_r69-Lb8vbn98u1le3i6MkKosRm31KJgbwTjd8XaErnOO1V_bKFsXcsJK7frWqU4pia3iikmBneBcjlbyE_Jh1zfm4odsfEFzb2IIdZSBCQ5KQUWfdmhO8XGNuQwrnw1Okw4Y13looGkYhx629ON_9CGuU6grbJVsGyae1eedMnXdnNANc_IrnTYDg2Eb1bBUy5_PUV1VfPHScj2u0O7pv2wqON-BlM2--po1_wsNa5j-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027521400</pqid></control><display><type>article</type><title>Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Grills, David C ; Lymar, Sergei V</creator><creatorcontrib>Grills, David C ; Lymar, Sergei V ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description><![CDATA[The solvated electron in CH
3
CN is scavenged by CO
2
with a rate constant of 3.2 × 10
10
M
−1
s
−1
to produce the carbon dioxide radical anion (CO
2
&z.rad;
−
), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm
−1
corresponding to the antisymmetric CO
2
&z.rad;
−
stretch. This assignment is confirmed by
13
C isotopic labelling experiments and DFT calculations. In neat CH
3
CN, CO
2
&z.rad;
−
decays on a ∼10 μs time scale
via
recombination with solvent-derived radicals (R&z.rad;) and solvated protons. Upon addition of formate (HCO
2
−
), the radiation yield of CO
2
&z.rad;
−
is substantially increased due to H-atom abstraction by R&z.rad; from HCO
2
−
(R&z.rad; + HCO
2
−
→ RH + CO
2
&z.rad;
−
), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN&z.rad;, CH
3
&z.rad;, and possibly, H&z.rad; primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH
2
CN&z.rad;. The removal of solvent radicals by HCO
2
−
also results in over a hundredfold increase in the CO
2
&z.rad;
−
lifetime. CO
2
&z.rad;
−
scavenging experiments suggest that at 50 mM HCO
2
−
, about 60% of the solvent-derived radicals are engaged in CO
2
&z.rad;
−
generation. Even under CO
2
saturation, no formation of the radical adduct, (CO
2
)
2
&z.rad;
−
, could be detected on the microsecond time scale.
First IR detection of CO
2
&z.rad;
−
in acetonitrile, produced by radiation-induced CO
2
reduction and oxidation of formate.]]></description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp00977e</identifier><identifier>PMID: 29620127</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Absorption spectra ; Acetonitrile ; Anions ; Carbon dioxide ; Infrared spectroscopy ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Radicals ; Radiolysis ; Solvents ; Time</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018, Vol.2 (15), p.111-117</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-badab41fb0cfa635b066ff1adad28d076f4d7af95f86887e5838174e64337bd73</citedby><cites>FETCH-LOGICAL-c478t-badab41fb0cfa635b066ff1adad28d076f4d7af95f86887e5838174e64337bd73</cites><orcidid>0000-0003-2663-6157 ; 0000-0001-8349-9158 ; 0000000183499158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29620127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1430880$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Grills, David C</creatorcontrib><creatorcontrib>Lymar, Sergei V</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description><![CDATA[The solvated electron in CH
3
CN is scavenged by CO
2
with a rate constant of 3.2 × 10
10
M
−1
s
−1
to produce the carbon dioxide radical anion (CO
2
&z.rad;
−
), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm
−1
corresponding to the antisymmetric CO
2
&z.rad;
−
stretch. This assignment is confirmed by
13
C isotopic labelling experiments and DFT calculations. In neat CH
3
CN, CO
2
&z.rad;
−
decays on a ∼10 μs time scale
via
recombination with solvent-derived radicals (R&z.rad;) and solvated protons. Upon addition of formate (HCO
2
−
), the radiation yield of CO
2
&z.rad;
−
is substantially increased due to H-atom abstraction by R&z.rad; from HCO
2
−
(R&z.rad; + HCO
2
−
→ RH + CO
2
&z.rad;
−
), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN&z.rad;, CH
3
&z.rad;, and possibly, H&z.rad; primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH
2
CN&z.rad;. The removal of solvent radicals by HCO
2
−
also results in over a hundredfold increase in the CO
2
&z.rad;
−
lifetime. CO
2
&z.rad;
−
scavenging experiments suggest that at 50 mM HCO
2
−
, about 60% of the solvent-derived radicals are engaged in CO
2
&z.rad;
−
generation. Even under CO
2
saturation, no formation of the radical adduct, (CO
2
)
2
&z.rad;
−
, could be detected on the microsecond time scale.
First IR detection of CO
2
&z.rad;
−
in acetonitrile, produced by radiation-induced CO
2
reduction and oxidation of formate.]]></description><subject>Absorption spectra</subject><subject>Acetonitrile</subject><subject>Anions</subject><subject>Carbon dioxide</subject><subject>Infrared spectroscopy</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Radicals</subject><subject>Radiolysis</subject><subject>Solvents</subject><subject>Time</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0d9LHDEQB_BQLGqtL74roX0phWsnm-wm-yiHtoLQIu3zkk0mGNlL1iQnvf--Oc-e0Kf8mA_DDF9Czhh8YcD7r0aZGaCXEt-QYyY6vuhBiYP9XXZH5F3ODwDAWsYPyVHTdw2wRh6TcKetj9OmeENdTCtdfAw0OlrukRqdxvqq4I-3SFOlRk9Uh63xgWqDJQZfkp9qFZ9QT2jpuKEl6ZA9hkJv7mie0ZQUs4nz5j156_SU8fTlPCG_r69-Lb8vbn98u1le3i6MkKosRm31KJgbwTjd8XaErnOO1V_bKFsXcsJK7frWqU4pia3iikmBneBcjlbyE_Jh1zfm4odsfEFzb2IIdZSBCQ5KQUWfdmhO8XGNuQwrnw1Okw4Y13looGkYhx629ON_9CGuU6grbJVsGyae1eedMnXdnNANc_IrnTYDg2Eb1bBUy5_PUV1VfPHScj2u0O7pv2wqON-BlM2--po1_wsNa5j-</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Grills, David C</creator><creator>Lymar, Sergei V</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2663-6157</orcidid><orcidid>https://orcid.org/0000-0001-8349-9158</orcidid><orcidid>https://orcid.org/0000000183499158</orcidid></search><sort><creationdate>2018</creationdate><title>Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy</title><author>Grills, David C ; Lymar, Sergei V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-badab41fb0cfa635b066ff1adad28d076f4d7af95f86887e5838174e64337bd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption spectra</topic><topic>Acetonitrile</topic><topic>Anions</topic><topic>Carbon dioxide</topic><topic>Infrared spectroscopy</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Radicals</topic><topic>Radiolysis</topic><topic>Solvents</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grills, David C</creatorcontrib><creatorcontrib>Lymar, Sergei V</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grills, David C</au><au>Lymar, Sergei V</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018</date><risdate>2018</risdate><volume>2</volume><issue>15</issue><spage>111</spage><epage>117</epage><pages>111-117</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract><![CDATA[The solvated electron in CH
3
CN is scavenged by CO
2
with a rate constant of 3.2 × 10
10
M
−1
s
−1
to produce the carbon dioxide radical anion (CO
2
&z.rad;
−
), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm
−1
corresponding to the antisymmetric CO
2
&z.rad;
−
stretch. This assignment is confirmed by
13
C isotopic labelling experiments and DFT calculations. In neat CH
3
CN, CO
2
&z.rad;
−
decays on a ∼10 μs time scale
via
recombination with solvent-derived radicals (R&z.rad;) and solvated protons. Upon addition of formate (HCO
2
−
), the radiation yield of CO
2
&z.rad;
−
is substantially increased due to H-atom abstraction by R&z.rad; from HCO
2
−
(R&z.rad; + HCO
2
−
→ RH + CO
2
&z.rad;
−
), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN&z.rad;, CH
3
&z.rad;, and possibly, H&z.rad; primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH
2
CN&z.rad;. The removal of solvent radicals by HCO
2
−
also results in over a hundredfold increase in the CO
2
&z.rad;
−
lifetime. CO
2
&z.rad;
−
scavenging experiments suggest that at 50 mM HCO
2
−
, about 60% of the solvent-derived radicals are engaged in CO
2
&z.rad;
−
generation. Even under CO
2
saturation, no formation of the radical adduct, (CO
2
)
2
&z.rad;
−
, could be detected on the microsecond time scale.
First IR detection of CO
2
&z.rad;
−
in acetonitrile, produced by radiation-induced CO
2
reduction and oxidation of formate.]]></abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29620127</pmid><doi>10.1039/c8cp00977e</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2663-6157</orcidid><orcidid>https://orcid.org/0000-0001-8349-9158</orcidid><orcidid>https://orcid.org/0000000183499158</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2018, Vol.2 (15), p.111-117 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_rsc_primary_c8cp00977e |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Absorption spectra Acetonitrile Anions Carbon dioxide Infrared spectroscopy INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Radicals Radiolysis Solvents Time |
title | Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A29%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiolytic%20formation%20of%20the%20carbon%20dioxide%20radical%20anion%20in%20acetonitrile%20revealed%20by%20transient%20IR%20spectroscopy&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Grills,%20David%20C&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2018&rft.volume=2&rft.issue=15&rft.spage=111&rft.epage=117&rft.pages=111-117&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp00977e&rft_dat=%3Cproquest_rsc_p%3E2022130900%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027521400&rft_id=info:pmid/29620127&rfr_iscdi=true |