Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy

The solvated electron in CH 3 CN is scavenged by CO 2 with a rate constant of 3.2 × 10 10 M −1 s −1 to produce the carbon dioxide radical anion (CO 2 &z.rad; − ), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2018, Vol.2 (15), p.111-117
Hauptverfasser: Grills, David C, Lymar, Sergei V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 15
container_start_page 111
container_title Physical chemistry chemical physics : PCCP
container_volume 2
creator Grills, David C
Lymar, Sergei V
description The solvated electron in CH 3 CN is scavenged by CO 2 with a rate constant of 3.2 × 10 10 M −1 s −1 to produce the carbon dioxide radical anion (CO 2 &z.rad; − ), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm −1 corresponding to the antisymmetric CO 2 &z.rad; − stretch. This assignment is confirmed by 13 C isotopic labelling experiments and DFT calculations. In neat CH 3 CN, CO 2 &z.rad; − decays on a ∼10 μs time scale via recombination with solvent-derived radicals (R&z.rad;) and solvated protons. Upon addition of formate (HCO 2 − ), the radiation yield of CO 2 &z.rad; − is substantially increased due to H-atom abstraction by R&z.rad; from HCO 2 − (R&z.rad; + HCO 2 − → RH + CO 2 &z.rad; − ), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN&z.rad;, CH 3 &z.rad;, and possibly, H&z.rad; primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH 2 CN&z.rad;. The removal of solvent radicals by HCO 2 − also results in over a hundredfold increase in the CO 2 &z.rad; − lifetime. CO 2 &z.rad; − scavenging experiments suggest that at 50 mM HCO 2 − , about 60% of the solvent-derived radicals are engaged in CO 2 &z.rad; − generation. Even under CO 2 saturation, no formation of the radical adduct, (CO 2 ) 2 &z.rad; − , could be detected on the microsecond time scale. First IR detection of CO 2 &z.rad; − in acetonitrile, produced by radiation-induced CO 2 reduction and oxidation of formate.
doi_str_mv 10.1039/c8cp00977e
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c8cp00977e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2022130900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-badab41fb0cfa635b066ff1adad28d076f4d7af95f86887e5838174e64337bd73</originalsourceid><addsrcrecordid>eNpd0d9LHDEQB_BQLGqtL74roX0phWsnm-wm-yiHtoLQIu3zkk0mGNlL1iQnvf--Oc-e0Kf8mA_DDF9Czhh8YcD7r0aZGaCXEt-QYyY6vuhBiYP9XXZH5F3ODwDAWsYPyVHTdw2wRh6TcKetj9OmeENdTCtdfAw0OlrukRqdxvqq4I-3SFOlRk9Uh63xgWqDJQZfkp9qFZ9QT2jpuKEl6ZA9hkJv7mie0ZQUs4nz5j156_SU8fTlPCG_r69-Lb8vbn98u1le3i6MkKosRm31KJgbwTjd8XaErnOO1V_bKFsXcsJK7frWqU4pia3iikmBneBcjlbyE_Jh1zfm4odsfEFzb2IIdZSBCQ5KQUWfdmhO8XGNuQwrnw1Okw4Y13looGkYhx629ON_9CGuU6grbJVsGyae1eedMnXdnNANc_IrnTYDg2Eb1bBUy5_PUV1VfPHScj2u0O7pv2wqON-BlM2--po1_wsNa5j-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027521400</pqid></control><display><type>article</type><title>Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Grills, David C ; Lymar, Sergei V</creator><creatorcontrib>Grills, David C ; Lymar, Sergei V ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description><![CDATA[The solvated electron in CH 3 CN is scavenged by CO 2 with a rate constant of 3.2 × 10 10 M −1 s −1 to produce the carbon dioxide radical anion (CO 2 &z.rad; − ), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm −1 corresponding to the antisymmetric CO 2 &z.rad; − stretch. This assignment is confirmed by 13 C isotopic labelling experiments and DFT calculations. In neat CH 3 CN, CO 2 &z.rad; − decays on a ∼10 μs time scale via recombination with solvent-derived radicals (R&z.rad;) and solvated protons. Upon addition of formate (HCO 2 − ), the radiation yield of CO 2 &z.rad; − is substantially increased due to H-atom abstraction by R&z.rad; from HCO 2 − (R&z.rad; + HCO 2 − → RH + CO 2 &z.rad; − ), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN&z.rad;, CH 3 &z.rad;, and possibly, H&z.rad; primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH 2 CN&z.rad;. The removal of solvent radicals by HCO 2 − also results in over a hundredfold increase in the CO 2 &z.rad; − lifetime. CO 2 &z.rad; − scavenging experiments suggest that at 50 mM HCO 2 − , about 60% of the solvent-derived radicals are engaged in CO 2 &z.rad; − generation. Even under CO 2 saturation, no formation of the radical adduct, (CO 2 ) 2 &z.rad; − , could be detected on the microsecond time scale. First IR detection of CO 2 &z.rad; − in acetonitrile, produced by radiation-induced CO 2 reduction and oxidation of formate.]]></description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp00977e</identifier><identifier>PMID: 29620127</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Absorption spectra ; Acetonitrile ; Anions ; Carbon dioxide ; Infrared spectroscopy ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Radicals ; Radiolysis ; Solvents ; Time</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018, Vol.2 (15), p.111-117</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-badab41fb0cfa635b066ff1adad28d076f4d7af95f86887e5838174e64337bd73</citedby><cites>FETCH-LOGICAL-c478t-badab41fb0cfa635b066ff1adad28d076f4d7af95f86887e5838174e64337bd73</cites><orcidid>0000-0003-2663-6157 ; 0000-0001-8349-9158 ; 0000000183499158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29620127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1430880$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Grills, David C</creatorcontrib><creatorcontrib>Lymar, Sergei V</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description><![CDATA[The solvated electron in CH 3 CN is scavenged by CO 2 with a rate constant of 3.2 × 10 10 M −1 s −1 to produce the carbon dioxide radical anion (CO 2 &z.rad; − ), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm −1 corresponding to the antisymmetric CO 2 &z.rad; − stretch. This assignment is confirmed by 13 C isotopic labelling experiments and DFT calculations. In neat CH 3 CN, CO 2 &z.rad; − decays on a ∼10 μs time scale via recombination with solvent-derived radicals (R&z.rad;) and solvated protons. Upon addition of formate (HCO 2 − ), the radiation yield of CO 2 &z.rad; − is substantially increased due to H-atom abstraction by R&z.rad; from HCO 2 − (R&z.rad; + HCO 2 − → RH + CO 2 &z.rad; − ), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN&z.rad;, CH 3 &z.rad;, and possibly, H&z.rad; primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH 2 CN&z.rad;. The removal of solvent radicals by HCO 2 − also results in over a hundredfold increase in the CO 2 &z.rad; − lifetime. CO 2 &z.rad; − scavenging experiments suggest that at 50 mM HCO 2 − , about 60% of the solvent-derived radicals are engaged in CO 2 &z.rad; − generation. Even under CO 2 saturation, no formation of the radical adduct, (CO 2 ) 2 &z.rad; − , could be detected on the microsecond time scale. First IR detection of CO 2 &z.rad; − in acetonitrile, produced by radiation-induced CO 2 reduction and oxidation of formate.]]></description><subject>Absorption spectra</subject><subject>Acetonitrile</subject><subject>Anions</subject><subject>Carbon dioxide</subject><subject>Infrared spectroscopy</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Radicals</subject><subject>Radiolysis</subject><subject>Solvents</subject><subject>Time</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0d9LHDEQB_BQLGqtL74roX0phWsnm-wm-yiHtoLQIu3zkk0mGNlL1iQnvf--Oc-e0Kf8mA_DDF9Czhh8YcD7r0aZGaCXEt-QYyY6vuhBiYP9XXZH5F3ODwDAWsYPyVHTdw2wRh6TcKetj9OmeENdTCtdfAw0OlrukRqdxvqq4I-3SFOlRk9Uh63xgWqDJQZfkp9qFZ9QT2jpuKEl6ZA9hkJv7mie0ZQUs4nz5j156_SU8fTlPCG_r69-Lb8vbn98u1le3i6MkKosRm31KJgbwTjd8XaErnOO1V_bKFsXcsJK7frWqU4pia3iikmBneBcjlbyE_Jh1zfm4odsfEFzb2IIdZSBCQ5KQUWfdmhO8XGNuQwrnw1Okw4Y13looGkYhx629ON_9CGuU6grbJVsGyae1eedMnXdnNANc_IrnTYDg2Eb1bBUy5_PUV1VfPHScj2u0O7pv2wqON-BlM2--po1_wsNa5j-</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Grills, David C</creator><creator>Lymar, Sergei V</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2663-6157</orcidid><orcidid>https://orcid.org/0000-0001-8349-9158</orcidid><orcidid>https://orcid.org/0000000183499158</orcidid></search><sort><creationdate>2018</creationdate><title>Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy</title><author>Grills, David C ; Lymar, Sergei V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-badab41fb0cfa635b066ff1adad28d076f4d7af95f86887e5838174e64337bd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption spectra</topic><topic>Acetonitrile</topic><topic>Anions</topic><topic>Carbon dioxide</topic><topic>Infrared spectroscopy</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Radicals</topic><topic>Radiolysis</topic><topic>Solvents</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grills, David C</creatorcontrib><creatorcontrib>Lymar, Sergei V</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grills, David C</au><au>Lymar, Sergei V</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018</date><risdate>2018</risdate><volume>2</volume><issue>15</issue><spage>111</spage><epage>117</epage><pages>111-117</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract><![CDATA[The solvated electron in CH 3 CN is scavenged by CO 2 with a rate constant of 3.2 × 10 10 M −1 s −1 to produce the carbon dioxide radical anion (CO 2 &z.rad; − ), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm −1 corresponding to the antisymmetric CO 2 &z.rad; − stretch. This assignment is confirmed by 13 C isotopic labelling experiments and DFT calculations. In neat CH 3 CN, CO 2 &z.rad; − decays on a ∼10 μs time scale via recombination with solvent-derived radicals (R&z.rad;) and solvated protons. Upon addition of formate (HCO 2 − ), the radiation yield of CO 2 &z.rad; − is substantially increased due to H-atom abstraction by R&z.rad; from HCO 2 − (R&z.rad; + HCO 2 − → RH + CO 2 &z.rad; − ), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN&z.rad;, CH 3 &z.rad;, and possibly, H&z.rad; primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH 2 CN&z.rad;. The removal of solvent radicals by HCO 2 − also results in over a hundredfold increase in the CO 2 &z.rad; − lifetime. CO 2 &z.rad; − scavenging experiments suggest that at 50 mM HCO 2 − , about 60% of the solvent-derived radicals are engaged in CO 2 &z.rad; − generation. Even under CO 2 saturation, no formation of the radical adduct, (CO 2 ) 2 &z.rad; − , could be detected on the microsecond time scale. First IR detection of CO 2 &z.rad; − in acetonitrile, produced by radiation-induced CO 2 reduction and oxidation of formate.]]></abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29620127</pmid><doi>10.1039/c8cp00977e</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2663-6157</orcidid><orcidid>https://orcid.org/0000-0001-8349-9158</orcidid><orcidid>https://orcid.org/0000000183499158</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2018, Vol.2 (15), p.111-117
issn 1463-9076
1463-9084
language eng
recordid cdi_rsc_primary_c8cp00977e
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Absorption spectra
Acetonitrile
Anions
Carbon dioxide
Infrared spectroscopy
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
Radicals
Radiolysis
Solvents
Time
title Radiolytic formation of the carbon dioxide radical anion in acetonitrile revealed by transient IR spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A29%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiolytic%20formation%20of%20the%20carbon%20dioxide%20radical%20anion%20in%20acetonitrile%20revealed%20by%20transient%20IR%20spectroscopy&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Grills,%20David%20C&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2018&rft.volume=2&rft.issue=15&rft.spage=111&rft.epage=117&rft.pages=111-117&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp00977e&rft_dat=%3Cproquest_rsc_p%3E2022130900%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027521400&rft_id=info:pmid/29620127&rfr_iscdi=true