Embedded nanolamps in electrospun nanofibers enabling online monitoring and ratiometric measurementsElectronic supplementary information (ESI) available. See DOI: 10.1039/c7tc03251j

A multifunctional composite nanomaterial based on nanofiber embedding upconversion nanoparticles (UCNPs) is designed to address the common limitations of bioanalysis including the colloidal stability of nanoparticles, high background signals and small sample volumes. We fabricate thin and uniform el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Buchner, Markus, Ngoensawat, Umphan, Schenck, Milena, Fenzl, Christoph, Wongkaew, Nongnoot, Matlock-Colangelo, Lauren, Hirsch, Thomas, Duerkop, Axel, Baeumner, Antje J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 972
container_issue 37
container_start_page 9712
container_title
container_volume 5
creator Buchner, Markus
Ngoensawat, Umphan
Schenck, Milena
Fenzl, Christoph
Wongkaew, Nongnoot
Matlock-Colangelo, Lauren
Hirsch, Thomas
Duerkop, Axel
Baeumner, Antje J
description A multifunctional composite nanomaterial based on nanofiber embedding upconversion nanoparticles (UCNPs) is designed to address the common limitations of bioanalysis including the colloidal stability of nanoparticles, high background signals and small sample volumes. We fabricate thin and uniform electrospun polyvinylpyrrolidone (PVP) nanofibers with a diameter of 170 ± 80 nm, containing up to 254 ± 9 mg mL −1 of non-agglomerated UCNPs. On distributing these nanofibers in a microfluidic channel a 50-fold increase in luminescence over dispersed particles can be obtained. A versatile miniaturized platform is created to work with small sample volumes by transferring the upconversion nanofibers into microfluidic channels. Fast and reproducible analytical signal response to their environment is demonstrated by taking advantage of the isotope effect between H 2 O and D 2 O upon 980 nm excitation. Furthermore, relevance to analytical applications employing energy transfer was confirmed using the spectral overlap of the green UCNP emission with the absorption spectra of a dye. At minute optical path lengths ( e.g. 50 μm) the luminescence properties of the UCNPs help in avoiding the most disturbing light scattering effects of the excitation source and channel geometries. This new nanomaterial platform enables rapid, simple and reliable online monitoring in microfluidic systems, medical applications ( e.g. in-tissue, in vivo ) and anti-counterfeiting in contrast to solution-based UCNP applications. Upconversion nanoparticles were incorporated in nanofibers as light emitting materials for online monitoring and ratiometric measurements in microfluidic systems.
doi_str_mv 10.1039/c7tc03251j
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c7tc03251j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c7tc03251j</sourcerecordid><originalsourceid>FETCH-rsc_primary_c7tc03251j3</originalsourceid><addsrcrecordid>eNqFT7FOwzAQtRBIVNCFHenYYGhxYpK2rBBEJ4ayR058Qa7ss2U7SHwY_4dbEAxIcMs7vXf3nh5jZwWfF1ysrvtF6rkoq2J7wCYlr_hsUYmbw--9rI_ZNMYtz7Ms6mW9mrD3xnaoFCogSc5I6yNoAjTYp-CiH2kvDLrDEAFJdkbTCzjKgGAd6eTCjpGkIMikncUUdA8WZRwDWqQUm083ynQcvTd7Voa3nDS4YHdfBJfNZn0F8lVqk0NwDhtEuH9a38LvfqfsaJAm4vQLT9j5Q_N89zgLsW990Dabtz_n4n_94i-99WoQH6z_cQs</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Embedded nanolamps in electrospun nanofibers enabling online monitoring and ratiometric measurementsElectronic supplementary information (ESI) available. See DOI: 10.1039/c7tc03251j</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Buchner, Markus ; Ngoensawat, Umphan ; Schenck, Milena ; Fenzl, Christoph ; Wongkaew, Nongnoot ; Matlock-Colangelo, Lauren ; Hirsch, Thomas ; Duerkop, Axel ; Baeumner, Antje J</creator><creatorcontrib>Buchner, Markus ; Ngoensawat, Umphan ; Schenck, Milena ; Fenzl, Christoph ; Wongkaew, Nongnoot ; Matlock-Colangelo, Lauren ; Hirsch, Thomas ; Duerkop, Axel ; Baeumner, Antje J</creatorcontrib><description>A multifunctional composite nanomaterial based on nanofiber embedding upconversion nanoparticles (UCNPs) is designed to address the common limitations of bioanalysis including the colloidal stability of nanoparticles, high background signals and small sample volumes. We fabricate thin and uniform electrospun polyvinylpyrrolidone (PVP) nanofibers with a diameter of 170 ± 80 nm, containing up to 254 ± 9 mg mL −1 of non-agglomerated UCNPs. On distributing these nanofibers in a microfluidic channel a 50-fold increase in luminescence over dispersed particles can be obtained. A versatile miniaturized platform is created to work with small sample volumes by transferring the upconversion nanofibers into microfluidic channels. Fast and reproducible analytical signal response to their environment is demonstrated by taking advantage of the isotope effect between H 2 O and D 2 O upon 980 nm excitation. Furthermore, relevance to analytical applications employing energy transfer was confirmed using the spectral overlap of the green UCNP emission with the absorption spectra of a dye. At minute optical path lengths ( e.g. 50 μm) the luminescence properties of the UCNPs help in avoiding the most disturbing light scattering effects of the excitation source and channel geometries. This new nanomaterial platform enables rapid, simple and reliable online monitoring in microfluidic systems, medical applications ( e.g. in-tissue, in vivo ) and anti-counterfeiting in contrast to solution-based UCNP applications. Upconversion nanoparticles were incorporated in nanofibers as light emitting materials for online monitoring and ratiometric measurements in microfluidic systems.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c7tc03251j</identifier><language>eng</language><creationdate>2017-09</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Buchner, Markus</creatorcontrib><creatorcontrib>Ngoensawat, Umphan</creatorcontrib><creatorcontrib>Schenck, Milena</creatorcontrib><creatorcontrib>Fenzl, Christoph</creatorcontrib><creatorcontrib>Wongkaew, Nongnoot</creatorcontrib><creatorcontrib>Matlock-Colangelo, Lauren</creatorcontrib><creatorcontrib>Hirsch, Thomas</creatorcontrib><creatorcontrib>Duerkop, Axel</creatorcontrib><creatorcontrib>Baeumner, Antje J</creatorcontrib><title>Embedded nanolamps in electrospun nanofibers enabling online monitoring and ratiometric measurementsElectronic supplementary information (ESI) available. See DOI: 10.1039/c7tc03251j</title><description>A multifunctional composite nanomaterial based on nanofiber embedding upconversion nanoparticles (UCNPs) is designed to address the common limitations of bioanalysis including the colloidal stability of nanoparticles, high background signals and small sample volumes. We fabricate thin and uniform electrospun polyvinylpyrrolidone (PVP) nanofibers with a diameter of 170 ± 80 nm, containing up to 254 ± 9 mg mL −1 of non-agglomerated UCNPs. On distributing these nanofibers in a microfluidic channel a 50-fold increase in luminescence over dispersed particles can be obtained. A versatile miniaturized platform is created to work with small sample volumes by transferring the upconversion nanofibers into microfluidic channels. Fast and reproducible analytical signal response to their environment is demonstrated by taking advantage of the isotope effect between H 2 O and D 2 O upon 980 nm excitation. Furthermore, relevance to analytical applications employing energy transfer was confirmed using the spectral overlap of the green UCNP emission with the absorption spectra of a dye. At minute optical path lengths ( e.g. 50 μm) the luminescence properties of the UCNPs help in avoiding the most disturbing light scattering effects of the excitation source and channel geometries. This new nanomaterial platform enables rapid, simple and reliable online monitoring in microfluidic systems, medical applications ( e.g. in-tissue, in vivo ) and anti-counterfeiting in contrast to solution-based UCNP applications. Upconversion nanoparticles were incorporated in nanofibers as light emitting materials for online monitoring and ratiometric measurements in microfluidic systems.</description><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFT7FOwzAQtRBIVNCFHenYYGhxYpK2rBBEJ4ayR058Qa7ss2U7SHwY_4dbEAxIcMs7vXf3nh5jZwWfF1ysrvtF6rkoq2J7wCYlr_hsUYmbw--9rI_ZNMYtz7Ms6mW9mrD3xnaoFCogSc5I6yNoAjTYp-CiH2kvDLrDEAFJdkbTCzjKgGAd6eTCjpGkIMikncUUdA8WZRwDWqQUm083ynQcvTd7Voa3nDS4YHdfBJfNZn0F8lVqk0NwDhtEuH9a38LvfqfsaJAm4vQLT9j5Q_N89zgLsW990Dabtz_n4n_94i-99WoQH6z_cQs</recordid><startdate>20170928</startdate><enddate>20170928</enddate><creator>Buchner, Markus</creator><creator>Ngoensawat, Umphan</creator><creator>Schenck, Milena</creator><creator>Fenzl, Christoph</creator><creator>Wongkaew, Nongnoot</creator><creator>Matlock-Colangelo, Lauren</creator><creator>Hirsch, Thomas</creator><creator>Duerkop, Axel</creator><creator>Baeumner, Antje J</creator><scope/></search><sort><creationdate>20170928</creationdate><title>Embedded nanolamps in electrospun nanofibers enabling online monitoring and ratiometric measurementsElectronic supplementary information (ESI) available. See DOI: 10.1039/c7tc03251j</title><author>Buchner, Markus ; Ngoensawat, Umphan ; Schenck, Milena ; Fenzl, Christoph ; Wongkaew, Nongnoot ; Matlock-Colangelo, Lauren ; Hirsch, Thomas ; Duerkop, Axel ; Baeumner, Antje J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c7tc03251j3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchner, Markus</creatorcontrib><creatorcontrib>Ngoensawat, Umphan</creatorcontrib><creatorcontrib>Schenck, Milena</creatorcontrib><creatorcontrib>Fenzl, Christoph</creatorcontrib><creatorcontrib>Wongkaew, Nongnoot</creatorcontrib><creatorcontrib>Matlock-Colangelo, Lauren</creatorcontrib><creatorcontrib>Hirsch, Thomas</creatorcontrib><creatorcontrib>Duerkop, Axel</creatorcontrib><creatorcontrib>Baeumner, Antje J</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchner, Markus</au><au>Ngoensawat, Umphan</au><au>Schenck, Milena</au><au>Fenzl, Christoph</au><au>Wongkaew, Nongnoot</au><au>Matlock-Colangelo, Lauren</au><au>Hirsch, Thomas</au><au>Duerkop, Axel</au><au>Baeumner, Antje J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedded nanolamps in electrospun nanofibers enabling online monitoring and ratiometric measurementsElectronic supplementary information (ESI) available. See DOI: 10.1039/c7tc03251j</atitle><date>2017-09-28</date><risdate>2017</risdate><volume>5</volume><issue>37</issue><spage>9712</spage><epage>972</epage><pages>9712-972</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>A multifunctional composite nanomaterial based on nanofiber embedding upconversion nanoparticles (UCNPs) is designed to address the common limitations of bioanalysis including the colloidal stability of nanoparticles, high background signals and small sample volumes. We fabricate thin and uniform electrospun polyvinylpyrrolidone (PVP) nanofibers with a diameter of 170 ± 80 nm, containing up to 254 ± 9 mg mL −1 of non-agglomerated UCNPs. On distributing these nanofibers in a microfluidic channel a 50-fold increase in luminescence over dispersed particles can be obtained. A versatile miniaturized platform is created to work with small sample volumes by transferring the upconversion nanofibers into microfluidic channels. Fast and reproducible analytical signal response to their environment is demonstrated by taking advantage of the isotope effect between H 2 O and D 2 O upon 980 nm excitation. Furthermore, relevance to analytical applications employing energy transfer was confirmed using the spectral overlap of the green UCNP emission with the absorption spectra of a dye. At minute optical path lengths ( e.g. 50 μm) the luminescence properties of the UCNPs help in avoiding the most disturbing light scattering effects of the excitation source and channel geometries. This new nanomaterial platform enables rapid, simple and reliable online monitoring in microfluidic systems, medical applications ( e.g. in-tissue, in vivo ) and anti-counterfeiting in contrast to solution-based UCNP applications. Upconversion nanoparticles were incorporated in nanofibers as light emitting materials for online monitoring and ratiometric measurements in microfluidic systems.</abstract><doi>10.1039/c7tc03251j</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof
issn 2050-7526
2050-7534
language eng
recordid cdi_rsc_primary_c7tc03251j
source Royal Society Of Chemistry Journals 2008-
title Embedded nanolamps in electrospun nanofibers enabling online monitoring and ratiometric measurementsElectronic supplementary information (ESI) available. See DOI: 10.1039/c7tc03251j
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T20%3A12%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedded%20nanolamps%20in%20electrospun%20nanofibers%20enabling%20online%20monitoring%20and%20ratiometric%20measurementsElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c7tc03251j&rft.au=Buchner,%20Markus&rft.date=2017-09-28&rft.volume=5&rft.issue=37&rft.spage=9712&rft.epage=972&rft.pages=9712-972&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c7tc03251j&rft_dat=%3Crsc%3Ec7tc03251j%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true