Electron paramagnetic resonance and electric characterization of a [CH3NH2NH2][Zn(HCOO)3] perovskite metal formate frameworkElectronic supplementary information (ESI) available. See DOI: 10.1039/c7tc01140g

We present a combined continuous-wave (CW) and pulse electron paramagnetic resonance (EPR), pulse electron-nuclear double resonance (ENDOR), pyrocurrent as well as broadband dielectric study of a [CH 3 NH 2 NH 2 ][Zn(HCOO) 3 ] dense perovskite metal-organic framework (MOF). The pyroelectric current...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Šim nas, Mantas, Bal i nas, Sergejus, Trzebiatowska, Monika, Ptak, Maciej, M czka, Miros aw, Völkel, Georg, Pöppl, Andreas, Banys, J ras
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4536
container_issue 18
container_start_page 4526
container_title
container_volume 5
creator Šim nas, Mantas
Bal i nas, Sergejus
Trzebiatowska, Monika
Ptak, Maciej
M czka, Miros aw
Völkel, Georg
Pöppl, Andreas
Banys, J ras
description We present a combined continuous-wave (CW) and pulse electron paramagnetic resonance (EPR), pulse electron-nuclear double resonance (ENDOR), pyrocurrent as well as broadband dielectric study of a [CH 3 NH 2 NH 2 ][Zn(HCOO) 3 ] dense perovskite metal-organic framework (MOF). The pyroelectric current of a single crystal sample reveals two structural phase transitions at T c1 = 325 and T c2 = 173 K that are related to the ordering of CH 3 NH 2 NH 2 + cations. The dielectric permittivity exhibits a small kink at T c1 implying improper ferroelectric phase transition, while much stronger anomaly is observed at T c2 . The dielectric spectra of the intermediate phase reveal a Cole-Cole relaxation process that is assigned to the hopping motion of the CH 3 NH 2 NH 2 + cations. EPR and ENDOR experiments are performed on powder MOF samples doped with small amounts of paramagnetic Mn 2+ and Cu 2+ probe ions. CW EPR spectra reveal the successful incorporation of these ions at the Zn 2+ lattice sites, while ENDOR measurements indicate several proton species that are in excellent agreement with the X-ray diffraction data. The CW EPR linewidth and intensity of the Mn 2+ spectra demonstrate anomalies at the phase transition points. The direct measurements of the phase memory time T m of the Mn 2+ centers indicate a second motional process of CH 3 NH 2 NH 2 + cations below T c2 . The measurements of the longitudinal relaxation time T 1 of the low-temperature phase reveal a coupling between the electron spins and a hard optical phonon mode which undergoes a damping due to the coupling with the relaxational mode as T c2 is approached. The temperature dependent Mn 2+ and Cu 2+ spectra reflect the structural changes of the metal-oxygen octahedra. The fine structure splitting of Mn 2+ ions is increasing as the temperature is decreased reflecting a distortion of the MnO 6 octahedra. The Cu 2+ hyperfine interaction demonstrates a first-order character close to the tricritical limit of the phase transition at T c2 . We present an EPR and electric characterization study of structural phase transitions in a novel methylhydrazinium formate framework.
doi_str_mv 10.1039/c7tc01140g
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c7tc01140g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c7tc01140g</sourcerecordid><originalsourceid>FETCH-rsc_primary_c7tc01140g3</originalsourceid><addsrcrecordid>eNqFj01PwzAMhiMEEtPYhTuSuW2HjbTZuo3rKOou9DBOTFNlMneEtUmVhCH4j_wnwvcBCSxLsZ3H7yszdhzxQcTF9EyOveRRNOSbPdaK-Yj3xyMx3P-u4-SQdZy75yEmUTJJpi32klYkvTUaGrRY40aTVxIsOaNRSwLUa6B3JozlXYCkJ6ue0auwZEpAWM4ycZXFIVfLG93NZnneEytoyJqd2ypPUJPHCkpjawxdGYzo0djtl3dQdg9NU1FN2qN9AqU_2DeLbrqY9wB3qCq8rWgACyK4yOfn8PvuI3ZQYuWo8_m22cllej3L-tbJorGqDuLFDy7a7PSv_6JZl-I_jVda6ndP</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electron paramagnetic resonance and electric characterization of a [CH3NH2NH2][Zn(HCOO)3] perovskite metal formate frameworkElectronic supplementary information (ESI) available. See DOI: 10.1039/c7tc01140g</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Šim nas, Mantas ; Bal i nas, Sergejus ; Trzebiatowska, Monika ; Ptak, Maciej ; M czka, Miros aw ; Völkel, Georg ; Pöppl, Andreas ; Banys, J ras</creator><creatorcontrib>Šim nas, Mantas ; Bal i nas, Sergejus ; Trzebiatowska, Monika ; Ptak, Maciej ; M czka, Miros aw ; Völkel, Georg ; Pöppl, Andreas ; Banys, J ras</creatorcontrib><description>We present a combined continuous-wave (CW) and pulse electron paramagnetic resonance (EPR), pulse electron-nuclear double resonance (ENDOR), pyrocurrent as well as broadband dielectric study of a [CH 3 NH 2 NH 2 ][Zn(HCOO) 3 ] dense perovskite metal-organic framework (MOF). The pyroelectric current of a single crystal sample reveals two structural phase transitions at T c1 = 325 and T c2 = 173 K that are related to the ordering of CH 3 NH 2 NH 2 + cations. The dielectric permittivity exhibits a small kink at T c1 implying improper ferroelectric phase transition, while much stronger anomaly is observed at T c2 . The dielectric spectra of the intermediate phase reveal a Cole-Cole relaxation process that is assigned to the hopping motion of the CH 3 NH 2 NH 2 + cations. EPR and ENDOR experiments are performed on powder MOF samples doped with small amounts of paramagnetic Mn 2+ and Cu 2+ probe ions. CW EPR spectra reveal the successful incorporation of these ions at the Zn 2+ lattice sites, while ENDOR measurements indicate several proton species that are in excellent agreement with the X-ray diffraction data. The CW EPR linewidth and intensity of the Mn 2+ spectra demonstrate anomalies at the phase transition points. The direct measurements of the phase memory time T m of the Mn 2+ centers indicate a second motional process of CH 3 NH 2 NH 2 + cations below T c2 . The measurements of the longitudinal relaxation time T 1 of the low-temperature phase reveal a coupling between the electron spins and a hard optical phonon mode which undergoes a damping due to the coupling with the relaxational mode as T c2 is approached. The temperature dependent Mn 2+ and Cu 2+ spectra reflect the structural changes of the metal-oxygen octahedra. The fine structure splitting of Mn 2+ ions is increasing as the temperature is decreased reflecting a distortion of the MnO 6 octahedra. The Cu 2+ hyperfine interaction demonstrates a first-order character close to the tricritical limit of the phase transition at T c2 . We present an EPR and electric characterization study of structural phase transitions in a novel methylhydrazinium formate framework.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c7tc01140g</identifier><language>eng</language><creationdate>2017-05</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Šim nas, Mantas</creatorcontrib><creatorcontrib>Bal i nas, Sergejus</creatorcontrib><creatorcontrib>Trzebiatowska, Monika</creatorcontrib><creatorcontrib>Ptak, Maciej</creatorcontrib><creatorcontrib>M czka, Miros aw</creatorcontrib><creatorcontrib>Völkel, Georg</creatorcontrib><creatorcontrib>Pöppl, Andreas</creatorcontrib><creatorcontrib>Banys, J ras</creatorcontrib><title>Electron paramagnetic resonance and electric characterization of a [CH3NH2NH2][Zn(HCOO)3] perovskite metal formate frameworkElectronic supplementary information (ESI) available. See DOI: 10.1039/c7tc01140g</title><description>We present a combined continuous-wave (CW) and pulse electron paramagnetic resonance (EPR), pulse electron-nuclear double resonance (ENDOR), pyrocurrent as well as broadband dielectric study of a [CH 3 NH 2 NH 2 ][Zn(HCOO) 3 ] dense perovskite metal-organic framework (MOF). The pyroelectric current of a single crystal sample reveals two structural phase transitions at T c1 = 325 and T c2 = 173 K that are related to the ordering of CH 3 NH 2 NH 2 + cations. The dielectric permittivity exhibits a small kink at T c1 implying improper ferroelectric phase transition, while much stronger anomaly is observed at T c2 . The dielectric spectra of the intermediate phase reveal a Cole-Cole relaxation process that is assigned to the hopping motion of the CH 3 NH 2 NH 2 + cations. EPR and ENDOR experiments are performed on powder MOF samples doped with small amounts of paramagnetic Mn 2+ and Cu 2+ probe ions. CW EPR spectra reveal the successful incorporation of these ions at the Zn 2+ lattice sites, while ENDOR measurements indicate several proton species that are in excellent agreement with the X-ray diffraction data. The CW EPR linewidth and intensity of the Mn 2+ spectra demonstrate anomalies at the phase transition points. The direct measurements of the phase memory time T m of the Mn 2+ centers indicate a second motional process of CH 3 NH 2 NH 2 + cations below T c2 . The measurements of the longitudinal relaxation time T 1 of the low-temperature phase reveal a coupling between the electron spins and a hard optical phonon mode which undergoes a damping due to the coupling with the relaxational mode as T c2 is approached. The temperature dependent Mn 2+ and Cu 2+ spectra reflect the structural changes of the metal-oxygen octahedra. The fine structure splitting of Mn 2+ ions is increasing as the temperature is decreased reflecting a distortion of the MnO 6 octahedra. The Cu 2+ hyperfine interaction demonstrates a first-order character close to the tricritical limit of the phase transition at T c2 . We present an EPR and electric characterization study of structural phase transitions in a novel methylhydrazinium formate framework.</description><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj01PwzAMhiMEEtPYhTuSuW2HjbTZuo3rKOou9DBOTFNlMneEtUmVhCH4j_wnwvcBCSxLsZ3H7yszdhzxQcTF9EyOveRRNOSbPdaK-Yj3xyMx3P-u4-SQdZy75yEmUTJJpi32klYkvTUaGrRY40aTVxIsOaNRSwLUa6B3JozlXYCkJ6ue0auwZEpAWM4ycZXFIVfLG93NZnneEytoyJqd2ypPUJPHCkpjawxdGYzo0djtl3dQdg9NU1FN2qN9AqU_2DeLbrqY9wB3qCq8rWgACyK4yOfn8PvuI3ZQYuWo8_m22cllej3L-tbJorGqDuLFDy7a7PSv_6JZl-I_jVda6ndP</recordid><startdate>20170511</startdate><enddate>20170511</enddate><creator>Šim nas, Mantas</creator><creator>Bal i nas, Sergejus</creator><creator>Trzebiatowska, Monika</creator><creator>Ptak, Maciej</creator><creator>M czka, Miros aw</creator><creator>Völkel, Georg</creator><creator>Pöppl, Andreas</creator><creator>Banys, J ras</creator><scope/></search><sort><creationdate>20170511</creationdate><title>Electron paramagnetic resonance and electric characterization of a [CH3NH2NH2][Zn(HCOO)3] perovskite metal formate frameworkElectronic supplementary information (ESI) available. See DOI: 10.1039/c7tc01140g</title><author>Šim nas, Mantas ; Bal i nas, Sergejus ; Trzebiatowska, Monika ; Ptak, Maciej ; M czka, Miros aw ; Völkel, Georg ; Pöppl, Andreas ; Banys, J ras</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c7tc01140g3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Šim nas, Mantas</creatorcontrib><creatorcontrib>Bal i nas, Sergejus</creatorcontrib><creatorcontrib>Trzebiatowska, Monika</creatorcontrib><creatorcontrib>Ptak, Maciej</creatorcontrib><creatorcontrib>M czka, Miros aw</creatorcontrib><creatorcontrib>Völkel, Georg</creatorcontrib><creatorcontrib>Pöppl, Andreas</creatorcontrib><creatorcontrib>Banys, J ras</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Šim nas, Mantas</au><au>Bal i nas, Sergejus</au><au>Trzebiatowska, Monika</au><au>Ptak, Maciej</au><au>M czka, Miros aw</au><au>Völkel, Georg</au><au>Pöppl, Andreas</au><au>Banys, J ras</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron paramagnetic resonance and electric characterization of a [CH3NH2NH2][Zn(HCOO)3] perovskite metal formate frameworkElectronic supplementary information (ESI) available. See DOI: 10.1039/c7tc01140g</atitle><date>2017-05-11</date><risdate>2017</risdate><volume>5</volume><issue>18</issue><spage>4526</spage><epage>4536</epage><pages>4526-4536</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>We present a combined continuous-wave (CW) and pulse electron paramagnetic resonance (EPR), pulse electron-nuclear double resonance (ENDOR), pyrocurrent as well as broadband dielectric study of a [CH 3 NH 2 NH 2 ][Zn(HCOO) 3 ] dense perovskite metal-organic framework (MOF). The pyroelectric current of a single crystal sample reveals two structural phase transitions at T c1 = 325 and T c2 = 173 K that are related to the ordering of CH 3 NH 2 NH 2 + cations. The dielectric permittivity exhibits a small kink at T c1 implying improper ferroelectric phase transition, while much stronger anomaly is observed at T c2 . The dielectric spectra of the intermediate phase reveal a Cole-Cole relaxation process that is assigned to the hopping motion of the CH 3 NH 2 NH 2 + cations. EPR and ENDOR experiments are performed on powder MOF samples doped with small amounts of paramagnetic Mn 2+ and Cu 2+ probe ions. CW EPR spectra reveal the successful incorporation of these ions at the Zn 2+ lattice sites, while ENDOR measurements indicate several proton species that are in excellent agreement with the X-ray diffraction data. The CW EPR linewidth and intensity of the Mn 2+ spectra demonstrate anomalies at the phase transition points. The direct measurements of the phase memory time T m of the Mn 2+ centers indicate a second motional process of CH 3 NH 2 NH 2 + cations below T c2 . The measurements of the longitudinal relaxation time T 1 of the low-temperature phase reveal a coupling between the electron spins and a hard optical phonon mode which undergoes a damping due to the coupling with the relaxational mode as T c2 is approached. The temperature dependent Mn 2+ and Cu 2+ spectra reflect the structural changes of the metal-oxygen octahedra. The fine structure splitting of Mn 2+ ions is increasing as the temperature is decreased reflecting a distortion of the MnO 6 octahedra. The Cu 2+ hyperfine interaction demonstrates a first-order character close to the tricritical limit of the phase transition at T c2 . We present an EPR and electric characterization study of structural phase transitions in a novel methylhydrazinium formate framework.</abstract><doi>10.1039/c7tc01140g</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof
issn 2050-7526
2050-7534
language eng
recordid cdi_rsc_primary_c7tc01140g
source Royal Society Of Chemistry Journals 2008-
title Electron paramagnetic resonance and electric characterization of a [CH3NH2NH2][Zn(HCOO)3] perovskite metal formate frameworkElectronic supplementary information (ESI) available. See DOI: 10.1039/c7tc01140g
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20paramagnetic%20resonance%20and%20electric%20characterization%20of%20a%20%5BCH3NH2NH2%5D%5BZn(HCOO)3%5D%20perovskite%20metal%20formate%20frameworkElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c7tc01140g&rft.au=%C5%A0im%20nas,%20Mantas&rft.date=2017-05-11&rft.volume=5&rft.issue=18&rft.spage=4526&rft.epage=4536&rft.pages=4526-4536&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c7tc01140g&rft_dat=%3Crsc%3Ec7tc01140g%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true