Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification
The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure. Rigid interfacial contact between electrodes and electrolyte and poor mechanical properties of ceramics limit the choices of applicable materials a...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (11), p.4649-4657 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4657 |
---|---|
container_issue | 11 |
container_start_page | 4649 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 6 |
creator | Liu, Ting Zhang, Yibo Zhang, Xue Wang, Lei Zhao, Shi-Xi Lin, Yuan-Hua Shen, Yang Luo, Jun Li, Liangliang Nan, Ce-Wen |
description | The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure. Rigid interfacial contact between electrodes and electrolyte and poor mechanical properties of ceramics limit the choices of applicable materials and fabrication processes for ASS batteries. In this report, a bulk type ASS lithium battery with an initial discharge capacity of 112.7 mA h g
−1
is successfully fabricated. A garnet-structured Li
6.75
La
3
Zr
1.75
Ta
0.25
O
12
(LLZO-Ta) ceramic pellet is used as the solid electrolyte. A slurry of a composite cathode consisting of Li[Ni
0.5
Co
0.2
Mn
0.3
]O
2
, In
2(1−
x
)
Sn
2
x
O
3
, Li
3
BO
3
, and polyvinylidene fluoride was tape-cast on the LLZO-Ta pellet and annealed to improve the interfacial contact among the particles in the composite cathode as well as between the composite cathode and the electrolyte pellet. Without the surface modification of a Li[Ni
0.5
Co
0.2
Mn
0.3
]O
2
active material, an obvious degradation of discharge capacity due to polarization is observed during cycling. When a layer of a Li-Ti-O precursor is coated on the surface of Li[Ni
0.5
Co
0.2
Mn
0.3
]O
2
particles,
in situ
spinel Li[Ti
0.1
Mn
0.9
]
2
O
4
is formed at the surface after annealing, leading to an enhancement of discharge capacity of the battery and great improvement for cycling stability. This novel method of interface modification reduces the interfacial polarization with an enhanced Li
+
transfer between the cathode and the electrolyte. Our experimental results reveal that the interface engineering by means of reasonable regulation on the surface constituent of electrode materials can effectively improve the capacity and cycling stability of ASS lithium batteries.
The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure. |
doi_str_mv | 10.1039/c7ta06833f |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c7ta06833f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2013225167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-92fac7a19c848ddfbd9ae872679debf5779b2a9d8dd8a95decd65ae811aa15d43</originalsourceid><addsrcrecordid>eNpFkM9LwzAUx4MoOOYu3oWAN6GatGuTHMfYpjDwMs8lTV5YZtvUJAX335s5me_yfn3e98EXoXtKnikpxItiUZKKF4W5QpOclCRjc1FdX2rOb9EshANJwQmphJigsOr3slegMbSgondqD51VssUDeON8d1piZ3Aztp84HofUfFsNWIGXCcStjXs7driRMYK3EDD0smmTYHPEtk8zI5NC57Q1STda19-hGyPbALO_PEUf69Vu-Zpt3zdvy8U2UwWvYibydMkkFYrPudam0UICZ3nFhIbGlIyJJpdCpx2XotSgdFUmglIpaannxRQ9nnUH775GCLE-uNH36WWdE1rkeUkrlqinM6W8C8GDqQdvO-mPNSX1ydd6yXaLX1_XCX44wz6oC_fve_EDQx93xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2013225167</pqid></control><display><type>article</type><title>Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Ting ; Zhang, Yibo ; Zhang, Xue ; Wang, Lei ; Zhao, Shi-Xi ; Lin, Yuan-Hua ; Shen, Yang ; Luo, Jun ; Li, Liangliang ; Nan, Ce-Wen</creator><creatorcontrib>Liu, Ting ; Zhang, Yibo ; Zhang, Xue ; Wang, Lei ; Zhao, Shi-Xi ; Lin, Yuan-Hua ; Shen, Yang ; Luo, Jun ; Li, Liangliang ; Nan, Ce-Wen</creatorcontrib><description>The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure. Rigid interfacial contact between electrodes and electrolyte and poor mechanical properties of ceramics limit the choices of applicable materials and fabrication processes for ASS batteries. In this report, a bulk type ASS lithium battery with an initial discharge capacity of 112.7 mA h g
−1
is successfully fabricated. A garnet-structured Li
6.75
La
3
Zr
1.75
Ta
0.25
O
12
(LLZO-Ta) ceramic pellet is used as the solid electrolyte. A slurry of a composite cathode consisting of Li[Ni
0.5
Co
0.2
Mn
0.3
]O
2
, In
2(1−
x
)
Sn
2
x
O
3
, Li
3
BO
3
, and polyvinylidene fluoride was tape-cast on the LLZO-Ta pellet and annealed to improve the interfacial contact among the particles in the composite cathode as well as between the composite cathode and the electrolyte pellet. Without the surface modification of a Li[Ni
0.5
Co
0.2
Mn
0.3
]O
2
active material, an obvious degradation of discharge capacity due to polarization is observed during cycling. When a layer of a Li-Ti-O precursor is coated on the surface of Li[Ni
0.5
Co
0.2
Mn
0.3
]O
2
particles,
in situ
spinel Li[Ti
0.1
Mn
0.9
]
2
O
4
is formed at the surface after annealing, leading to an enhancement of discharge capacity of the battery and great improvement for cycling stability. This novel method of interface modification reduces the interfacial polarization with an enhanced Li
+
transfer between the cathode and the electrolyte. Our experimental results reveal that the interface engineering by means of reasonable regulation on the surface constituent of electrode materials can effectively improve the capacity and cycling stability of ASS lithium batteries.
The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c7ta06833f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Annealing ; Batteries ; Cathodes ; Cathodic polarization ; Ceramics ; Cycles ; Discharge ; Discharge capacity ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrodes ; Electrolytes ; Fabrication ; Interface stability ; Lithium ; Lithium batteries ; Lithium borates ; Materials selection ; Mechanical properties ; Particulate composites ; Particulates ; Polarization ; Polyvinylidene fluorides ; Slurries ; Solid electrolytes ; Tape casting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (11), p.4649-4657</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-92fac7a19c848ddfbd9ae872679debf5779b2a9d8dd8a95decd65ae811aa15d43</citedby><cites>FETCH-LOGICAL-c386t-92fac7a19c848ddfbd9ae872679debf5779b2a9d8dd8a95decd65ae811aa15d43</cites><orcidid>0000-0001-7808-7052 ; 0000-0003-3311-5915 ; 0000-0001-5084-2087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Zhang, Yibo</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhao, Shi-Xi</creatorcontrib><creatorcontrib>Lin, Yuan-Hua</creatorcontrib><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Li, Liangliang</creatorcontrib><creatorcontrib>Nan, Ce-Wen</creatorcontrib><title>Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure. Rigid interfacial contact between electrodes and electrolyte and poor mechanical properties of ceramics limit the choices of applicable materials and fabrication processes for ASS batteries. In this report, a bulk type ASS lithium battery with an initial discharge capacity of 112.7 mA h g
−1
is successfully fabricated. A garnet-structured Li
6.75
La
3
Zr
1.75
Ta
0.25
O
12
(LLZO-Ta) ceramic pellet is used as the solid electrolyte. A slurry of a composite cathode consisting of Li[Ni
0.5
Co
0.2
Mn
0.3
]O
2
, In
2(1−
x
)
Sn
2
x
O
3
, Li
3
BO
3
, and polyvinylidene fluoride was tape-cast on the LLZO-Ta pellet and annealed to improve the interfacial contact among the particles in the composite cathode as well as between the composite cathode and the electrolyte pellet. Without the surface modification of a Li[Ni
0.5
Co
0.2
Mn
0.3
]O
2
active material, an obvious degradation of discharge capacity due to polarization is observed during cycling. When a layer of a Li-Ti-O precursor is coated on the surface of Li[Ni
0.5
Co
0.2
Mn
0.3
]O
2
particles,
in situ
spinel Li[Ti
0.1
Mn
0.9
]
2
O
4
is formed at the surface after annealing, leading to an enhancement of discharge capacity of the battery and great improvement for cycling stability. This novel method of interface modification reduces the interfacial polarization with an enhanced Li
+
transfer between the cathode and the electrolyte. Our experimental results reveal that the interface engineering by means of reasonable regulation on the surface constituent of electrode materials can effectively improve the capacity and cycling stability of ASS lithium batteries.
The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure.</description><subject>Annealing</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Cathodic polarization</subject><subject>Ceramics</subject><subject>Cycles</subject><subject>Discharge</subject><subject>Discharge capacity</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Fabrication</subject><subject>Interface stability</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium borates</subject><subject>Materials selection</subject><subject>Mechanical properties</subject><subject>Particulate composites</subject><subject>Particulates</subject><subject>Polarization</subject><subject>Polyvinylidene fluorides</subject><subject>Slurries</subject><subject>Solid electrolytes</subject><subject>Tape casting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkM9LwzAUx4MoOOYu3oWAN6GatGuTHMfYpjDwMs8lTV5YZtvUJAX335s5me_yfn3e98EXoXtKnikpxItiUZKKF4W5QpOclCRjc1FdX2rOb9EshANJwQmphJigsOr3slegMbSgondqD51VssUDeON8d1piZ3Aztp84HofUfFsNWIGXCcStjXs7driRMYK3EDD0smmTYHPEtk8zI5NC57Q1STda19-hGyPbALO_PEUf69Vu-Zpt3zdvy8U2UwWvYibydMkkFYrPudam0UICZ3nFhIbGlIyJJpdCpx2XotSgdFUmglIpaannxRQ9nnUH775GCLE-uNH36WWdE1rkeUkrlqinM6W8C8GDqQdvO-mPNSX1ydd6yXaLX1_XCX44wz6oC_fve_EDQx93xg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Liu, Ting</creator><creator>Zhang, Yibo</creator><creator>Zhang, Xue</creator><creator>Wang, Lei</creator><creator>Zhao, Shi-Xi</creator><creator>Lin, Yuan-Hua</creator><creator>Shen, Yang</creator><creator>Luo, Jun</creator><creator>Li, Liangliang</creator><creator>Nan, Ce-Wen</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7808-7052</orcidid><orcidid>https://orcid.org/0000-0003-3311-5915</orcidid><orcidid>https://orcid.org/0000-0001-5084-2087</orcidid></search><sort><creationdate>2018</creationdate><title>Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification</title><author>Liu, Ting ; Zhang, Yibo ; Zhang, Xue ; Wang, Lei ; Zhao, Shi-Xi ; Lin, Yuan-Hua ; Shen, Yang ; Luo, Jun ; Li, Liangliang ; Nan, Ce-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-92fac7a19c848ddfbd9ae872679debf5779b2a9d8dd8a95decd65ae811aa15d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annealing</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Cathodic polarization</topic><topic>Ceramics</topic><topic>Cycles</topic><topic>Discharge</topic><topic>Discharge capacity</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Fabrication</topic><topic>Interface stability</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium borates</topic><topic>Materials selection</topic><topic>Mechanical properties</topic><topic>Particulate composites</topic><topic>Particulates</topic><topic>Polarization</topic><topic>Polyvinylidene fluorides</topic><topic>Slurries</topic><topic>Solid electrolytes</topic><topic>Tape casting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Zhang, Yibo</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhao, Shi-Xi</creatorcontrib><creatorcontrib>Lin, Yuan-Hua</creatorcontrib><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Li, Liangliang</creatorcontrib><creatorcontrib>Nan, Ce-Wen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ting</au><au>Zhang, Yibo</au><au>Zhang, Xue</au><au>Wang, Lei</au><au>Zhao, Shi-Xi</au><au>Lin, Yuan-Hua</au><au>Shen, Yang</au><au>Luo, Jun</au><au>Li, Liangliang</au><au>Nan, Ce-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>11</issue><spage>4649</spage><epage>4657</epage><pages>4649-4657</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure. Rigid interfacial contact between electrodes and electrolyte and poor mechanical properties of ceramics limit the choices of applicable materials and fabrication processes for ASS batteries. In this report, a bulk type ASS lithium battery with an initial discharge capacity of 112.7 mA h g
−1
is successfully fabricated. A garnet-structured Li
6.75
La
3
Zr
1.75
Ta
0.25
O
12
(LLZO-Ta) ceramic pellet is used as the solid electrolyte. A slurry of a composite cathode consisting of Li[Ni
0.5
Co
0.2
Mn
0.3
]O
2
, In
2(1−
x
)
Sn
2
x
O
3
, Li
3
BO
3
, and polyvinylidene fluoride was tape-cast on the LLZO-Ta pellet and annealed to improve the interfacial contact among the particles in the composite cathode as well as between the composite cathode and the electrolyte pellet. Without the surface modification of a Li[Ni
0.5
Co
0.2
Mn
0.3
]O
2
active material, an obvious degradation of discharge capacity due to polarization is observed during cycling. When a layer of a Li-Ti-O precursor is coated on the surface of Li[Ni
0.5
Co
0.2
Mn
0.3
]O
2
particles,
in situ
spinel Li[Ti
0.1
Mn
0.9
]
2
O
4
is formed at the surface after annealing, leading to an enhancement of discharge capacity of the battery and great improvement for cycling stability. This novel method of interface modification reduces the interfacial polarization with an enhanced Li
+
transfer between the cathode and the electrolyte. Our experimental results reveal that the interface engineering by means of reasonable regulation on the surface constituent of electrode materials can effectively improve the capacity and cycling stability of ASS lithium batteries.
The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7ta06833f</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7808-7052</orcidid><orcidid>https://orcid.org/0000-0003-3311-5915</orcidid><orcidid>https://orcid.org/0000-0001-5084-2087</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (11), p.4649-4657 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_rsc_primary_c7ta06833f |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Annealing Batteries Cathodes Cathodic polarization Ceramics Cycles Discharge Discharge capacity Electrochemical analysis Electrochemistry Electrode materials Electrodes Electrolytes Fabrication Interface stability Lithium Lithium batteries Lithium borates Materials selection Mechanical properties Particulate composites Particulates Polarization Polyvinylidene fluorides Slurries Solid electrolytes Tape casting |
title | Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20electrochemical%20performance%20of%20bulk%20type%20oxide%20ceramic%20lithium%20batteries%20enabled%20by%20interface%20modification&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Liu,%20Ting&rft.date=2018&rft.volume=6&rft.issue=11&rft.spage=4649&rft.epage=4657&rft.pages=4649-4657&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c7ta06833f&rft_dat=%3Cproquest_rsc_p%3E2013225167%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2013225167&rft_id=info:pmid/&rfr_iscdi=true |