Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification

The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure. Rigid interfacial contact between electrodes and electrolyte and poor mechanical properties of ceramics limit the choices of applicable materials a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (11), p.4649-4657
Hauptverfasser: Liu, Ting, Zhang, Yibo, Zhang, Xue, Wang, Lei, Zhao, Shi-Xi, Lin, Yuan-Hua, Shen, Yang, Luo, Jun, Li, Liangliang, Nan, Ce-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4657
container_issue 11
container_start_page 4649
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Liu, Ting
Zhang, Yibo
Zhang, Xue
Wang, Lei
Zhao, Shi-Xi
Lin, Yuan-Hua
Shen, Yang
Luo, Jun
Li, Liangliang
Nan, Ce-Wen
description The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure. Rigid interfacial contact between electrodes and electrolyte and poor mechanical properties of ceramics limit the choices of applicable materials and fabrication processes for ASS batteries. In this report, a bulk type ASS lithium battery with an initial discharge capacity of 112.7 mA h g −1 is successfully fabricated. A garnet-structured Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 (LLZO-Ta) ceramic pellet is used as the solid electrolyte. A slurry of a composite cathode consisting of Li[Ni 0.5 Co 0.2 Mn 0.3 ]O 2 , In 2(1− x ) Sn 2 x O 3 , Li 3 BO 3 , and polyvinylidene fluoride was tape-cast on the LLZO-Ta pellet and annealed to improve the interfacial contact among the particles in the composite cathode as well as between the composite cathode and the electrolyte pellet. Without the surface modification of a Li[Ni 0.5 Co 0.2 Mn 0.3 ]O 2 active material, an obvious degradation of discharge capacity due to polarization is observed during cycling. When a layer of a Li-Ti-O precursor is coated on the surface of Li[Ni 0.5 Co 0.2 Mn 0.3 ]O 2 particles, in situ spinel Li[Ti 0.1 Mn 0.9 ] 2 O 4 is formed at the surface after annealing, leading to an enhancement of discharge capacity of the battery and great improvement for cycling stability. This novel method of interface modification reduces the interfacial polarization with an enhanced Li + transfer between the cathode and the electrolyte. Our experimental results reveal that the interface engineering by means of reasonable regulation on the surface constituent of electrode materials can effectively improve the capacity and cycling stability of ASS lithium batteries. The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure.
doi_str_mv 10.1039/c7ta06833f
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c7ta06833f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2013225167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-92fac7a19c848ddfbd9ae872679debf5779b2a9d8dd8a95decd65ae811aa15d43</originalsourceid><addsrcrecordid>eNpFkM9LwzAUx4MoOOYu3oWAN6GatGuTHMfYpjDwMs8lTV5YZtvUJAX335s5me_yfn3e98EXoXtKnikpxItiUZKKF4W5QpOclCRjc1FdX2rOb9EshANJwQmphJigsOr3slegMbSgondqD51VssUDeON8d1piZ3Aztp84HofUfFsNWIGXCcStjXs7driRMYK3EDD0smmTYHPEtk8zI5NC57Q1STda19-hGyPbALO_PEUf69Vu-Zpt3zdvy8U2UwWvYibydMkkFYrPudam0UICZ3nFhIbGlIyJJpdCpx2XotSgdFUmglIpaannxRQ9nnUH775GCLE-uNH36WWdE1rkeUkrlqinM6W8C8GDqQdvO-mPNSX1ydd6yXaLX1_XCX44wz6oC_fve_EDQx93xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2013225167</pqid></control><display><type>article</type><title>Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Ting ; Zhang, Yibo ; Zhang, Xue ; Wang, Lei ; Zhao, Shi-Xi ; Lin, Yuan-Hua ; Shen, Yang ; Luo, Jun ; Li, Liangliang ; Nan, Ce-Wen</creator><creatorcontrib>Liu, Ting ; Zhang, Yibo ; Zhang, Xue ; Wang, Lei ; Zhao, Shi-Xi ; Lin, Yuan-Hua ; Shen, Yang ; Luo, Jun ; Li, Liangliang ; Nan, Ce-Wen</creatorcontrib><description>The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure. Rigid interfacial contact between electrodes and electrolyte and poor mechanical properties of ceramics limit the choices of applicable materials and fabrication processes for ASS batteries. In this report, a bulk type ASS lithium battery with an initial discharge capacity of 112.7 mA h g −1 is successfully fabricated. A garnet-structured Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 (LLZO-Ta) ceramic pellet is used as the solid electrolyte. A slurry of a composite cathode consisting of Li[Ni 0.5 Co 0.2 Mn 0.3 ]O 2 , In 2(1− x ) Sn 2 x O 3 , Li 3 BO 3 , and polyvinylidene fluoride was tape-cast on the LLZO-Ta pellet and annealed to improve the interfacial contact among the particles in the composite cathode as well as between the composite cathode and the electrolyte pellet. Without the surface modification of a Li[Ni 0.5 Co 0.2 Mn 0.3 ]O 2 active material, an obvious degradation of discharge capacity due to polarization is observed during cycling. When a layer of a Li-Ti-O precursor is coated on the surface of Li[Ni 0.5 Co 0.2 Mn 0.3 ]O 2 particles, in situ spinel Li[Ti 0.1 Mn 0.9 ] 2 O 4 is formed at the surface after annealing, leading to an enhancement of discharge capacity of the battery and great improvement for cycling stability. This novel method of interface modification reduces the interfacial polarization with an enhanced Li + transfer between the cathode and the electrolyte. Our experimental results reveal that the interface engineering by means of reasonable regulation on the surface constituent of electrode materials can effectively improve the capacity and cycling stability of ASS lithium batteries. The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c7ta06833f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Annealing ; Batteries ; Cathodes ; Cathodic polarization ; Ceramics ; Cycles ; Discharge ; Discharge capacity ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrodes ; Electrolytes ; Fabrication ; Interface stability ; Lithium ; Lithium batteries ; Lithium borates ; Materials selection ; Mechanical properties ; Particulate composites ; Particulates ; Polarization ; Polyvinylidene fluorides ; Slurries ; Solid electrolytes ; Tape casting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (11), p.4649-4657</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-92fac7a19c848ddfbd9ae872679debf5779b2a9d8dd8a95decd65ae811aa15d43</citedby><cites>FETCH-LOGICAL-c386t-92fac7a19c848ddfbd9ae872679debf5779b2a9d8dd8a95decd65ae811aa15d43</cites><orcidid>0000-0001-7808-7052 ; 0000-0003-3311-5915 ; 0000-0001-5084-2087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Zhang, Yibo</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhao, Shi-Xi</creatorcontrib><creatorcontrib>Lin, Yuan-Hua</creatorcontrib><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Li, Liangliang</creatorcontrib><creatorcontrib>Nan, Ce-Wen</creatorcontrib><title>Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure. Rigid interfacial contact between electrodes and electrolyte and poor mechanical properties of ceramics limit the choices of applicable materials and fabrication processes for ASS batteries. In this report, a bulk type ASS lithium battery with an initial discharge capacity of 112.7 mA h g −1 is successfully fabricated. A garnet-structured Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 (LLZO-Ta) ceramic pellet is used as the solid electrolyte. A slurry of a composite cathode consisting of Li[Ni 0.5 Co 0.2 Mn 0.3 ]O 2 , In 2(1− x ) Sn 2 x O 3 , Li 3 BO 3 , and polyvinylidene fluoride was tape-cast on the LLZO-Ta pellet and annealed to improve the interfacial contact among the particles in the composite cathode as well as between the composite cathode and the electrolyte pellet. Without the surface modification of a Li[Ni 0.5 Co 0.2 Mn 0.3 ]O 2 active material, an obvious degradation of discharge capacity due to polarization is observed during cycling. When a layer of a Li-Ti-O precursor is coated on the surface of Li[Ni 0.5 Co 0.2 Mn 0.3 ]O 2 particles, in situ spinel Li[Ti 0.1 Mn 0.9 ] 2 O 4 is formed at the surface after annealing, leading to an enhancement of discharge capacity of the battery and great improvement for cycling stability. This novel method of interface modification reduces the interfacial polarization with an enhanced Li + transfer between the cathode and the electrolyte. Our experimental results reveal that the interface engineering by means of reasonable regulation on the surface constituent of electrode materials can effectively improve the capacity and cycling stability of ASS lithium batteries. The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure.</description><subject>Annealing</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Cathodic polarization</subject><subject>Ceramics</subject><subject>Cycles</subject><subject>Discharge</subject><subject>Discharge capacity</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Fabrication</subject><subject>Interface stability</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium borates</subject><subject>Materials selection</subject><subject>Mechanical properties</subject><subject>Particulate composites</subject><subject>Particulates</subject><subject>Polarization</subject><subject>Polyvinylidene fluorides</subject><subject>Slurries</subject><subject>Solid electrolytes</subject><subject>Tape casting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkM9LwzAUx4MoOOYu3oWAN6GatGuTHMfYpjDwMs8lTV5YZtvUJAX335s5me_yfn3e98EXoXtKnikpxItiUZKKF4W5QpOclCRjc1FdX2rOb9EshANJwQmphJigsOr3slegMbSgondqD51VssUDeON8d1piZ3Aztp84HofUfFsNWIGXCcStjXs7driRMYK3EDD0smmTYHPEtk8zI5NC57Q1STda19-hGyPbALO_PEUf69Vu-Zpt3zdvy8U2UwWvYibydMkkFYrPudam0UICZ3nFhIbGlIyJJpdCpx2XotSgdFUmglIpaannxRQ9nnUH775GCLE-uNH36WWdE1rkeUkrlqinM6W8C8GDqQdvO-mPNSX1ydd6yXaLX1_XCX44wz6oC_fve_EDQx93xg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Liu, Ting</creator><creator>Zhang, Yibo</creator><creator>Zhang, Xue</creator><creator>Wang, Lei</creator><creator>Zhao, Shi-Xi</creator><creator>Lin, Yuan-Hua</creator><creator>Shen, Yang</creator><creator>Luo, Jun</creator><creator>Li, Liangliang</creator><creator>Nan, Ce-Wen</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7808-7052</orcidid><orcidid>https://orcid.org/0000-0003-3311-5915</orcidid><orcidid>https://orcid.org/0000-0001-5084-2087</orcidid></search><sort><creationdate>2018</creationdate><title>Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification</title><author>Liu, Ting ; Zhang, Yibo ; Zhang, Xue ; Wang, Lei ; Zhao, Shi-Xi ; Lin, Yuan-Hua ; Shen, Yang ; Luo, Jun ; Li, Liangliang ; Nan, Ce-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-92fac7a19c848ddfbd9ae872679debf5779b2a9d8dd8a95decd65ae811aa15d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annealing</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Cathodic polarization</topic><topic>Ceramics</topic><topic>Cycles</topic><topic>Discharge</topic><topic>Discharge capacity</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Fabrication</topic><topic>Interface stability</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium borates</topic><topic>Materials selection</topic><topic>Mechanical properties</topic><topic>Particulate composites</topic><topic>Particulates</topic><topic>Polarization</topic><topic>Polyvinylidene fluorides</topic><topic>Slurries</topic><topic>Solid electrolytes</topic><topic>Tape casting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Zhang, Yibo</creatorcontrib><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhao, Shi-Xi</creatorcontrib><creatorcontrib>Lin, Yuan-Hua</creatorcontrib><creatorcontrib>Shen, Yang</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Li, Liangliang</creatorcontrib><creatorcontrib>Nan, Ce-Wen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ting</au><au>Zhang, Yibo</au><au>Zhang, Xue</au><au>Wang, Lei</au><au>Zhao, Shi-Xi</au><au>Lin, Yuan-Hua</au><au>Shen, Yang</au><au>Luo, Jun</au><au>Li, Liangliang</au><au>Nan, Ce-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>11</issue><spage>4649</spage><epage>4657</epage><pages>4649-4657</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure. Rigid interfacial contact between electrodes and electrolyte and poor mechanical properties of ceramics limit the choices of applicable materials and fabrication processes for ASS batteries. In this report, a bulk type ASS lithium battery with an initial discharge capacity of 112.7 mA h g −1 is successfully fabricated. A garnet-structured Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 (LLZO-Ta) ceramic pellet is used as the solid electrolyte. A slurry of a composite cathode consisting of Li[Ni 0.5 Co 0.2 Mn 0.3 ]O 2 , In 2(1− x ) Sn 2 x O 3 , Li 3 BO 3 , and polyvinylidene fluoride was tape-cast on the LLZO-Ta pellet and annealed to improve the interfacial contact among the particles in the composite cathode as well as between the composite cathode and the electrolyte pellet. Without the surface modification of a Li[Ni 0.5 Co 0.2 Mn 0.3 ]O 2 active material, an obvious degradation of discharge capacity due to polarization is observed during cycling. When a layer of a Li-Ti-O precursor is coated on the surface of Li[Ni 0.5 Co 0.2 Mn 0.3 ]O 2 particles, in situ spinel Li[Ti 0.1 Mn 0.9 ] 2 O 4 is formed at the surface after annealing, leading to an enhancement of discharge capacity of the battery and great improvement for cycling stability. This novel method of interface modification reduces the interfacial polarization with an enhanced Li + transfer between the cathode and the electrolyte. Our experimental results reveal that the interface engineering by means of reasonable regulation on the surface constituent of electrode materials can effectively improve the capacity and cycling stability of ASS lithium batteries. The interface issue is one of the severe problems in all-solid-state (ASS) batteries, especially for oxide-type batteries with a full ceramic structure.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7ta06833f</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7808-7052</orcidid><orcidid>https://orcid.org/0000-0003-3311-5915</orcidid><orcidid>https://orcid.org/0000-0001-5084-2087</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (11), p.4649-4657
issn 2050-7488
2050-7496
language eng
recordid cdi_rsc_primary_c7ta06833f
source Royal Society Of Chemistry Journals 2008-
subjects Annealing
Batteries
Cathodes
Cathodic polarization
Ceramics
Cycles
Discharge
Discharge capacity
Electrochemical analysis
Electrochemistry
Electrode materials
Electrodes
Electrolytes
Fabrication
Interface stability
Lithium
Lithium batteries
Lithium borates
Materials selection
Mechanical properties
Particulate composites
Particulates
Polarization
Polyvinylidene fluorides
Slurries
Solid electrolytes
Tape casting
title Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20electrochemical%20performance%20of%20bulk%20type%20oxide%20ceramic%20lithium%20batteries%20enabled%20by%20interface%20modification&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Liu,%20Ting&rft.date=2018&rft.volume=6&rft.issue=11&rft.spage=4649&rft.epage=4657&rft.pages=4649-4657&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c7ta06833f&rft_dat=%3Cproquest_rsc_p%3E2013225167%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2013225167&rft_id=info:pmid/&rfr_iscdi=true