Improving the activity and stability of Ir catalysts for PEM electrolyzer anodes by SnO2:Sb aerogel supports: does V addition play an active role in electrocatalysis?Electronic supplementary information (ESI) available: Materials and methods, energy-dispersive X-ray spectroscopy (EDS) analysis, additional XPS, SEM, HRTEM and electrochemical measurements results. See DOI: 10.1039/c7ta00679a
Low Ir loading oxygen evolution reaction (OER) catalysts with superior activity and durability for proton exchange membrane (PEM) electrolyzers are an important topic in industry and academia. One possible strategy for addressing this challenge is the use of support materials that are stable under h...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low Ir loading oxygen evolution reaction (OER) catalysts with superior activity and durability for proton exchange membrane (PEM) electrolyzers are an important topic in industry and academia. One possible strategy for addressing this challenge is the use of support materials that are stable under highly corrosive acidic environments at a high working potential (>1.4 V). Moreover, highly porous structure is another key criteria for OER catalyst support to achieve a high electrochemical surface area. Here, we report a novel Ir supported on a SnO
2
:Sb aerogel OER catalyst (Ir/SnO
2
:Sb-mod-V), which was prepared under ambient pressure by using vanadium additives. It shows an unrivaled activity and enhanced stability, on which vanadium does not play any active role but demonstrates the influences that changes the porosity of the aerogel support and affects the impurity content of the chlorine. By taking advantage of the high porosity of the aerogel substrate, Ir/SnO
2
:Sb-mod-V allows a decrease of more than 70 wt% for precious metal usage in the catalyst layer while keeping a similar OER activity compared to its unsupported counterpart.
Aerogel is introduced as an OER catalyst substrate for PEM electrolyzer and shows superior activity. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/c7ta00679a |