The role of anions in adsorbate-induced anchoring transitions of liquid crystals on surfaces with discrete cation binding sites
We report a combined theoretical and experimental effort to elucidate systematically for the first time the influence of anions of transition metal salt-decorated surfaces on the orientations of supported films of nematic liquid crystals (LCs) and adsorbate-induced orientational transitions of these...
Gespeichert in:
Veröffentlicht in: | Soft matter 2018, Vol.14 (5), p.797-85 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 5 |
container_start_page | 797 |
container_title | Soft matter |
container_volume | 14 |
creator | Szilvási, Tibor Bao, Nanqi Yu, Huaizhe Twieg, Robert J Mavrikakis, Manos Abbott, Nicholas L |
description | We report a combined theoretical and experimental effort to elucidate systematically for the first time the influence of anions of transition metal salt-decorated surfaces on the orientations of supported films of nematic liquid crystals (LCs) and adsorbate-induced orientational transitions of these LC films. Guided by computational chemistry predictions, we find that nitrate anions weaken the binding of 4′-
n
-pentyl-4-biphenylcarbonitrile (5CB) to transition metal cations, as compared to perchlorate salts, although binding is still sufficiently strong to induce homeotropic (perpendicular) orientations of 5CB. In addition, we find the orientations of the LC to be correlated across all metal cations investigated by a molecular anchoring energy density that is calculated as the product of the single-site binding energy and metal cation binding site density on the surface. The weaker single-site binding energy caused by nitrate also facilitates competitive binding of adsorbates to the metal cations, leading to more facile orientational transitions induced by adsorbates. Finally, our analysis suggests that nitrate anions recruit water
via
hydrogen bonding to the metal binding sites, modulating further the relative net binding energies of 5CB and adsorbates to surfaces decorated with metal nitrates. After accounting for the presence of water, we find a universal exponential relationship between the calculated displacement free energies and measured dynamic response of LCs to adsorbates for all metal salts studied, independent of the metal salt anion.
A universal exponential relationship is found between calculated displacement free energies and adsorbate-induced dynamic responses of liquid crystals for a range of metal salts. Nitrate anions provide fast response times. |
doi_str_mv | 10.1039/c7sm01981e |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_rsc_primary_c7sm01981e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989546603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-d7f98624016aa3f5f76400dfcafe9f1491746619823b19f2d471a67f45f360af3</originalsourceid><addsrcrecordid>eNpdkc1rVDEUxYMo9kM37pWgGxGeJi-ZvJdlGVortLiwgruQyYeT8iZpc_OQrvzXvdOpU-gqIfd3zr03h5A3nH3mTOgvboAN43rk4Rk55IOUnRrl-Hx_F78OyBHANWNilFy9JAe9FgyR_pD8vVoHWssUaInU5lQy0JSp9VDqyrbQpexnFzzW3LrUlH_TVm2G1O5RFE3pdk6eunoHzU74lCnMNVoXgP5JbU19AldDC9TZrYiu0HLrgx4BXpEXEVXh9cN5TH6enV4tz7uL71-_LU8uOieUbJ0foh5VLxlX1oq4iIOSjPnobAw6cqlxVaXwD3qx4jr2Xg7cqiHKRRSK2SiOyfudb4GWDDjs7dau5BxcM6gXC60R-riDbmq5nQM0s8HZwzTZHMoMBv31AvswgeiHJ-h1mWvGFUzPONOM8Z4j9WlHuVoAaojmpqaNrXeGM7PNziyHH5f32Z0i_O7Bcl5tgt-j_8NC4O0OqOD21cfwxT-TZJ7S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010900121</pqid></control><display><type>article</type><title>The role of anions in adsorbate-induced anchoring transitions of liquid crystals on surfaces with discrete cation binding sites</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Szilvási, Tibor ; Bao, Nanqi ; Yu, Huaizhe ; Twieg, Robert J ; Mavrikakis, Manos ; Abbott, Nicholas L</creator><creatorcontrib>Szilvási, Tibor ; Bao, Nanqi ; Yu, Huaizhe ; Twieg, Robert J ; Mavrikakis, Manos ; Abbott, Nicholas L ; Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center</creatorcontrib><description>We report a combined theoretical and experimental effort to elucidate systematically for the first time the influence of anions of transition metal salt-decorated surfaces on the orientations of supported films of nematic liquid crystals (LCs) and adsorbate-induced orientational transitions of these LC films. Guided by computational chemistry predictions, we find that nitrate anions weaken the binding of 4′-
n
-pentyl-4-biphenylcarbonitrile (5CB) to transition metal cations, as compared to perchlorate salts, although binding is still sufficiently strong to induce homeotropic (perpendicular) orientations of 5CB. In addition, we find the orientations of the LC to be correlated across all metal cations investigated by a molecular anchoring energy density that is calculated as the product of the single-site binding energy and metal cation binding site density on the surface. The weaker single-site binding energy caused by nitrate also facilitates competitive binding of adsorbates to the metal cations, leading to more facile orientational transitions induced by adsorbates. Finally, our analysis suggests that nitrate anions recruit water
via
hydrogen bonding to the metal binding sites, modulating further the relative net binding energies of 5CB and adsorbates to surfaces decorated with metal nitrates. After accounting for the presence of water, we find a universal exponential relationship between the calculated displacement free energies and measured dynamic response of LCs to adsorbates for all metal salts studied, independent of the metal salt anion.
A universal exponential relationship is found between calculated displacement free energies and adsorbate-induced dynamic responses of liquid crystals for a range of metal salts. Nitrate anions provide fast response times.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c7sm01981e</identifier><identifier>PMID: 29308482</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adsorbates ; Anchoring ; Anions ; Binding energy ; Binding sites ; Cations ; Chemical bonds ; Computational chemistry ; Computer applications ; Crystals ; Dynamic response ; Energy ; Flux density ; Hydrogen bonding ; Liquid crystals ; Mathematical analysis ; Metal ions ; Metal nitrates ; Nematic crystals ; Nitrates ; Perchlorate ; Perchloric acid ; Salts ; Thermodynamics</subject><ispartof>Soft matter, 2018, Vol.14 (5), p.797-85</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-d7f98624016aa3f5f76400dfcafe9f1491746619823b19f2d471a67f45f360af3</citedby><cites>FETCH-LOGICAL-c364t-d7f98624016aa3f5f76400dfcafe9f1491746619823b19f2d471a67f45f360af3</cites><orcidid>0000-0002-5293-5356 ; 0000-0003-2139-6377 ; 0000-0002-9653-0326 ; 0000000321396377 ; 0000000296530326 ; 0000000252935356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29308482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1493599$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Szilvási, Tibor</creatorcontrib><creatorcontrib>Bao, Nanqi</creatorcontrib><creatorcontrib>Yu, Huaizhe</creatorcontrib><creatorcontrib>Twieg, Robert J</creatorcontrib><creatorcontrib>Mavrikakis, Manos</creatorcontrib><creatorcontrib>Abbott, Nicholas L</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center</creatorcontrib><title>The role of anions in adsorbate-induced anchoring transitions of liquid crystals on surfaces with discrete cation binding sites</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>We report a combined theoretical and experimental effort to elucidate systematically for the first time the influence of anions of transition metal salt-decorated surfaces on the orientations of supported films of nematic liquid crystals (LCs) and adsorbate-induced orientational transitions of these LC films. Guided by computational chemistry predictions, we find that nitrate anions weaken the binding of 4′-
n
-pentyl-4-biphenylcarbonitrile (5CB) to transition metal cations, as compared to perchlorate salts, although binding is still sufficiently strong to induce homeotropic (perpendicular) orientations of 5CB. In addition, we find the orientations of the LC to be correlated across all metal cations investigated by a molecular anchoring energy density that is calculated as the product of the single-site binding energy and metal cation binding site density on the surface. The weaker single-site binding energy caused by nitrate also facilitates competitive binding of adsorbates to the metal cations, leading to more facile orientational transitions induced by adsorbates. Finally, our analysis suggests that nitrate anions recruit water
via
hydrogen bonding to the metal binding sites, modulating further the relative net binding energies of 5CB and adsorbates to surfaces decorated with metal nitrates. After accounting for the presence of water, we find a universal exponential relationship between the calculated displacement free energies and measured dynamic response of LCs to adsorbates for all metal salts studied, independent of the metal salt anion.
A universal exponential relationship is found between calculated displacement free energies and adsorbate-induced dynamic responses of liquid crystals for a range of metal salts. Nitrate anions provide fast response times.</description><subject>Adsorbates</subject><subject>Anchoring</subject><subject>Anions</subject><subject>Binding energy</subject><subject>Binding sites</subject><subject>Cations</subject><subject>Chemical bonds</subject><subject>Computational chemistry</subject><subject>Computer applications</subject><subject>Crystals</subject><subject>Dynamic response</subject><subject>Energy</subject><subject>Flux density</subject><subject>Hydrogen bonding</subject><subject>Liquid crystals</subject><subject>Mathematical analysis</subject><subject>Metal ions</subject><subject>Metal nitrates</subject><subject>Nematic crystals</subject><subject>Nitrates</subject><subject>Perchlorate</subject><subject>Perchloric acid</subject><subject>Salts</subject><subject>Thermodynamics</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rVDEUxYMo9kM37pWgGxGeJi-ZvJdlGVortLiwgruQyYeT8iZpc_OQrvzXvdOpU-gqIfd3zr03h5A3nH3mTOgvboAN43rk4Rk55IOUnRrl-Hx_F78OyBHANWNilFy9JAe9FgyR_pD8vVoHWssUaInU5lQy0JSp9VDqyrbQpexnFzzW3LrUlH_TVm2G1O5RFE3pdk6eunoHzU74lCnMNVoXgP5JbU19AldDC9TZrYiu0HLrgx4BXpEXEVXh9cN5TH6enV4tz7uL71-_LU8uOieUbJ0foh5VLxlX1oq4iIOSjPnobAw6cqlxVaXwD3qx4jr2Xg7cqiHKRRSK2SiOyfudb4GWDDjs7dau5BxcM6gXC60R-riDbmq5nQM0s8HZwzTZHMoMBv31AvswgeiHJ-h1mWvGFUzPONOM8Z4j9WlHuVoAaojmpqaNrXeGM7PNziyHH5f32Z0i_O7Bcl5tgt-j_8NC4O0OqOD21cfwxT-TZJ7S</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Szilvási, Tibor</creator><creator>Bao, Nanqi</creator><creator>Yu, Huaizhe</creator><creator>Twieg, Robert J</creator><creator>Mavrikakis, Manos</creator><creator>Abbott, Nicholas L</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5293-5356</orcidid><orcidid>https://orcid.org/0000-0003-2139-6377</orcidid><orcidid>https://orcid.org/0000-0002-9653-0326</orcidid><orcidid>https://orcid.org/0000000321396377</orcidid><orcidid>https://orcid.org/0000000296530326</orcidid><orcidid>https://orcid.org/0000000252935356</orcidid></search><sort><creationdate>2018</creationdate><title>The role of anions in adsorbate-induced anchoring transitions of liquid crystals on surfaces with discrete cation binding sites</title><author>Szilvási, Tibor ; Bao, Nanqi ; Yu, Huaizhe ; Twieg, Robert J ; Mavrikakis, Manos ; Abbott, Nicholas L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-d7f98624016aa3f5f76400dfcafe9f1491746619823b19f2d471a67f45f360af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorbates</topic><topic>Anchoring</topic><topic>Anions</topic><topic>Binding energy</topic><topic>Binding sites</topic><topic>Cations</topic><topic>Chemical bonds</topic><topic>Computational chemistry</topic><topic>Computer applications</topic><topic>Crystals</topic><topic>Dynamic response</topic><topic>Energy</topic><topic>Flux density</topic><topic>Hydrogen bonding</topic><topic>Liquid crystals</topic><topic>Mathematical analysis</topic><topic>Metal ions</topic><topic>Metal nitrates</topic><topic>Nematic crystals</topic><topic>Nitrates</topic><topic>Perchlorate</topic><topic>Perchloric acid</topic><topic>Salts</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szilvási, Tibor</creatorcontrib><creatorcontrib>Bao, Nanqi</creatorcontrib><creatorcontrib>Yu, Huaizhe</creatorcontrib><creatorcontrib>Twieg, Robert J</creatorcontrib><creatorcontrib>Mavrikakis, Manos</creatorcontrib><creatorcontrib>Abbott, Nicholas L</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szilvási, Tibor</au><au>Bao, Nanqi</au><au>Yu, Huaizhe</au><au>Twieg, Robert J</au><au>Mavrikakis, Manos</au><au>Abbott, Nicholas L</au><aucorp>Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of anions in adsorbate-induced anchoring transitions of liquid crystals on surfaces with discrete cation binding sites</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2018</date><risdate>2018</risdate><volume>14</volume><issue>5</issue><spage>797</spage><epage>85</epage><pages>797-85</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>We report a combined theoretical and experimental effort to elucidate systematically for the first time the influence of anions of transition metal salt-decorated surfaces on the orientations of supported films of nematic liquid crystals (LCs) and adsorbate-induced orientational transitions of these LC films. Guided by computational chemistry predictions, we find that nitrate anions weaken the binding of 4′-
n
-pentyl-4-biphenylcarbonitrile (5CB) to transition metal cations, as compared to perchlorate salts, although binding is still sufficiently strong to induce homeotropic (perpendicular) orientations of 5CB. In addition, we find the orientations of the LC to be correlated across all metal cations investigated by a molecular anchoring energy density that is calculated as the product of the single-site binding energy and metal cation binding site density on the surface. The weaker single-site binding energy caused by nitrate also facilitates competitive binding of adsorbates to the metal cations, leading to more facile orientational transitions induced by adsorbates. Finally, our analysis suggests that nitrate anions recruit water
via
hydrogen bonding to the metal binding sites, modulating further the relative net binding energies of 5CB and adsorbates to surfaces decorated with metal nitrates. After accounting for the presence of water, we find a universal exponential relationship between the calculated displacement free energies and measured dynamic response of LCs to adsorbates for all metal salts studied, independent of the metal salt anion.
A universal exponential relationship is found between calculated displacement free energies and adsorbate-induced dynamic responses of liquid crystals for a range of metal salts. Nitrate anions provide fast response times.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29308482</pmid><doi>10.1039/c7sm01981e</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5293-5356</orcidid><orcidid>https://orcid.org/0000-0003-2139-6377</orcidid><orcidid>https://orcid.org/0000-0002-9653-0326</orcidid><orcidid>https://orcid.org/0000000321396377</orcidid><orcidid>https://orcid.org/0000000296530326</orcidid><orcidid>https://orcid.org/0000000252935356</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2018, Vol.14 (5), p.797-85 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_rsc_primary_c7sm01981e |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Adsorbates Anchoring Anions Binding energy Binding sites Cations Chemical bonds Computational chemistry Computer applications Crystals Dynamic response Energy Flux density Hydrogen bonding Liquid crystals Mathematical analysis Metal ions Metal nitrates Nematic crystals Nitrates Perchlorate Perchloric acid Salts Thermodynamics |
title | The role of anions in adsorbate-induced anchoring transitions of liquid crystals on surfaces with discrete cation binding sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20anions%20in%20adsorbate-induced%20anchoring%20transitions%20of%20liquid%20crystals%20on%20surfaces%20with%20discrete%20cation%20binding%20sites&rft.jtitle=Soft%20matter&rft.au=Szilv%C3%A1si,%20Tibor&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory-National%20Energy%20Research%20Scientific%20Computing%20Center&rft.date=2018&rft.volume=14&rft.issue=5&rft.spage=797&rft.epage=85&rft.pages=797-85&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c7sm01981e&rft_dat=%3Cproquest_pubme%3E1989546603%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010900121&rft_id=info:pmid/29308482&rfr_iscdi=true |