Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion deviceElectronic supplementary information (ESI) available: Trapped ion implementation of quantum optical operations, an experiment detection scheme, and experimental data error analysis. See DOI: 10.1039/c7sc04602b
Molecules are one of the most demanding quantum systems to be simulated by quantum computers due to their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh et al. (Nature Photon., 9, 615 (2015)) showed that a multi-photon network with a Gaussian input state c...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 4 |
container_start_page | 836 |
container_title | |
container_volume | 9 |
creator | Shen, Yangchao Lu, Yao Zhang, Kuan Zhang, Junhua Zhang, Shuaining Huh, Joonsuk Kim, Kihwan |
description | Molecules are one of the most demanding quantum systems to be simulated by quantum computers due to their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh
et al.
(Nature Photon., 9, 615 (2015)) showed that a multi-photon network with a Gaussian input state can simulate a molecular spectroscopic process. Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO
2
as an example. In order to perform reliable Gaussian sampling, we develop the essential experimental technology with phonons, which includes the phase-coherent manipulation of displacement, squeezing, and rotation operations with multiple modes in a single realization. The required quantum optical operations are implemented through Raman laser beams. The molecular spectroscopic signal is reconstructed from the collective projection measurements for the two-phonon-mode. Our experimental demonstration will pave the way to large-scale molecular quantum simulations, which are classically intractable, but would be easily verifiable by real molecular spectroscopy.
Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO
2
as an example. |
doi_str_mv | 10.1039/c7sc04602b |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c7sc04602b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c7sc04602b</sourcerecordid><originalsourceid>FETCH-rsc_primary_c7sc04602b3</originalsourceid><addsrcrecordid>eNqFkM1PwzAMxQsCiQl24Y5kbkNiI233oe3KhtgJoe1euakLQWkSknSi_z3pxgCBBLkk1vPv-TlRdB6zQczS6Q2fOM6GY5bkh1EnYcO4Px6l06PPd8JOoq5zLyycNI1HyaRz0HusUfm6Am284CiBqlqiF1qBLqHSknioLWxEbrUSHJwh7q12XJsGaifUEyB4i8ZQ0W-xgjaC00Ju27ZEbYykipRH24BQpbbVbkJvsVpeAW5QSMwlzWC984FWFNWe2qd5_RFVG7Jb0V0DKqC3UIuWCBl8GN9ijj8Hk1YvvjUEuECPQNZqGzSUjRNuACsimD8sZ_D7S8-i4xKlo-7HfRpd3C3Wt_d963hmgm1YLvtqT__XL__SM1OU6TsiH5sx</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion deviceElectronic supplementary information (ESI) available: Trapped ion implementation of quantum optical operations, an experiment detection scheme, and experimental data error analysis. See DOI: 10.1039/c7sc04602b</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Shen, Yangchao ; Lu, Yao ; Zhang, Kuan ; Zhang, Junhua ; Zhang, Shuaining ; Huh, Joonsuk ; Kim, Kihwan</creator><creatorcontrib>Shen, Yangchao ; Lu, Yao ; Zhang, Kuan ; Zhang, Junhua ; Zhang, Shuaining ; Huh, Joonsuk ; Kim, Kihwan</creatorcontrib><description>Molecules are one of the most demanding quantum systems to be simulated by quantum computers due to their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh
et al.
(Nature Photon., 9, 615 (2015)) showed that a multi-photon network with a Gaussian input state can simulate a molecular spectroscopic process. Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO
2
as an example. In order to perform reliable Gaussian sampling, we develop the essential experimental technology with phonons, which includes the phase-coherent manipulation of displacement, squeezing, and rotation operations with multiple modes in a single realization. The required quantum optical operations are implemented through Raman laser beams. The molecular spectroscopic signal is reconstructed from the collective projection measurements for the two-phonon-mode. Our experimental demonstration will pave the way to large-scale molecular quantum simulations, which are classically intractable, but would be easily verifiable by real molecular spectroscopy.
Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO
2
as an example.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c7sc04602b</identifier><language>eng</language><creationdate>2018-01</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Shen, Yangchao</creatorcontrib><creatorcontrib>Lu, Yao</creatorcontrib><creatorcontrib>Zhang, Kuan</creatorcontrib><creatorcontrib>Zhang, Junhua</creatorcontrib><creatorcontrib>Zhang, Shuaining</creatorcontrib><creatorcontrib>Huh, Joonsuk</creatorcontrib><creatorcontrib>Kim, Kihwan</creatorcontrib><title>Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion deviceElectronic supplementary information (ESI) available: Trapped ion implementation of quantum optical operations, an experiment detection scheme, and experimental data error analysis. See DOI: 10.1039/c7sc04602b</title><description>Molecules are one of the most demanding quantum systems to be simulated by quantum computers due to their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh
et al.
(Nature Photon., 9, 615 (2015)) showed that a multi-photon network with a Gaussian input state can simulate a molecular spectroscopic process. Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO
2
as an example. In order to perform reliable Gaussian sampling, we develop the essential experimental technology with phonons, which includes the phase-coherent manipulation of displacement, squeezing, and rotation operations with multiple modes in a single realization. The required quantum optical operations are implemented through Raman laser beams. The molecular spectroscopic signal is reconstructed from the collective projection measurements for the two-phonon-mode. Our experimental demonstration will pave the way to large-scale molecular quantum simulations, which are classically intractable, but would be easily verifiable by real molecular spectroscopy.
Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO
2
as an example.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFkM1PwzAMxQsCiQl24Y5kbkNiI233oe3KhtgJoe1euakLQWkSknSi_z3pxgCBBLkk1vPv-TlRdB6zQczS6Q2fOM6GY5bkh1EnYcO4Px6l06PPd8JOoq5zLyycNI1HyaRz0HusUfm6Am284CiBqlqiF1qBLqHSknioLWxEbrUSHJwh7q12XJsGaifUEyB4i8ZQ0W-xgjaC00Ju27ZEbYykipRH24BQpbbVbkJvsVpeAW5QSMwlzWC984FWFNWe2qd5_RFVG7Jb0V0DKqC3UIuWCBl8GN9ijj8Hk1YvvjUEuECPQNZqGzSUjRNuACsimD8sZ_D7S8-i4xKlo-7HfRpd3C3Wt_d963hmgm1YLvtqT__XL__SM1OU6TsiH5sx</recordid><startdate>20180124</startdate><enddate>20180124</enddate><creator>Shen, Yangchao</creator><creator>Lu, Yao</creator><creator>Zhang, Kuan</creator><creator>Zhang, Junhua</creator><creator>Zhang, Shuaining</creator><creator>Huh, Joonsuk</creator><creator>Kim, Kihwan</creator><scope/></search><sort><creationdate>20180124</creationdate><title>Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion deviceElectronic supplementary information (ESI) available: Trapped ion implementation of quantum optical operations, an experiment detection scheme, and experimental data error analysis. See DOI: 10.1039/c7sc04602b</title><author>Shen, Yangchao ; Lu, Yao ; Zhang, Kuan ; Zhang, Junhua ; Zhang, Shuaining ; Huh, Joonsuk ; Kim, Kihwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c7sc04602b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yangchao</creatorcontrib><creatorcontrib>Lu, Yao</creatorcontrib><creatorcontrib>Zhang, Kuan</creatorcontrib><creatorcontrib>Zhang, Junhua</creatorcontrib><creatorcontrib>Zhang, Shuaining</creatorcontrib><creatorcontrib>Huh, Joonsuk</creatorcontrib><creatorcontrib>Kim, Kihwan</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Yangchao</au><au>Lu, Yao</au><au>Zhang, Kuan</au><au>Zhang, Junhua</au><au>Zhang, Shuaining</au><au>Huh, Joonsuk</au><au>Kim, Kihwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion deviceElectronic supplementary information (ESI) available: Trapped ion implementation of quantum optical operations, an experiment detection scheme, and experimental data error analysis. See DOI: 10.1039/c7sc04602b</atitle><date>2018-01-24</date><risdate>2018</risdate><volume>9</volume><issue>4</issue><spage>836</spage><epage>84</epage><pages>836-84</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Molecules are one of the most demanding quantum systems to be simulated by quantum computers due to their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh
et al.
(Nature Photon., 9, 615 (2015)) showed that a multi-photon network with a Gaussian input state can simulate a molecular spectroscopic process. Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO
2
as an example. In order to perform reliable Gaussian sampling, we develop the essential experimental technology with phonons, which includes the phase-coherent manipulation of displacement, squeezing, and rotation operations with multiple modes in a single realization. The required quantum optical operations are implemented through Raman laser beams. The molecular spectroscopic signal is reconstructed from the collective projection measurements for the two-phonon-mode. Our experimental demonstration will pave the way to large-scale molecular quantum simulations, which are classically intractable, but would be easily verifiable by real molecular spectroscopy.
Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO
2
as an example.</abstract><doi>10.1039/c7sc04602b</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_rsc_primary_c7sc04602b |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
title | Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion deviceElectronic supplementary information (ESI) available: Trapped ion implementation of quantum optical operations, an experiment detection scheme, and experimental data error analysis. See DOI: 10.1039/c7sc04602b |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20optical%20emulation%20of%20molecular%20vibronic%20spectroscopy%20using%20a%20trapped-ion%20deviceElectronic%20supplementary%20information%20(ESI)%20available:%20Trapped%20ion%20implementation%20of%20quantum%20optical%20operations,%20an%20experiment%20detection%20scheme,%20and%20experimental%20data%20error%20analysis.%20See%20DOI:%2010.1039/c7sc04602b&rft.au=Shen,%20Yangchao&rft.date=2018-01-24&rft.volume=9&rft.issue=4&rft.spage=836&rft.epage=84&rft.pages=836-84&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c7sc04602b&rft_dat=%3Crsc%3Ec7sc04602b%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |