Radiation enhanced uptake of Hg0(g) on iron (oxyhydr)oxide nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra07401h

Despite the proposed importance of atmospheric mercury (Hg) cycling, little is known about its heterogeneous chemistry, specifically on ubiquitous dust particle surfaces in the environment. To address this gap in knowledge, we herein report the uptake coefficients for the uptake of Hg 0 (g) on iron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kurien, Uday, Hu, Zhenzhong, Lee, Heonho, Dastoor, Ashu P, Ariya, Parisa A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4521
container_issue 71
container_start_page 451
container_title
container_volume 7
creator Kurien, Uday
Hu, Zhenzhong
Lee, Heonho
Dastoor, Ashu P
Ariya, Parisa A
description Despite the proposed importance of atmospheric mercury (Hg) cycling, little is known about its heterogeneous chemistry, specifically on ubiquitous dust particle surfaces in the environment. To address this gap in knowledge, we herein report the uptake coefficients for the uptake of Hg 0 (g) on iron (oxyhydr)oxides (γ-Fe 2 O 3 , α-FeOOH, α-Fe 2 O 3 and Fe 3 O 4 ) nanoparticles, employed as proxies for reactive components of mineral dust. Hg 0 (g) -particle interactions were studied in a batch set-up, at ambient pressure (760 ± 5 Torr) and temperatures (295 ± 2 K) with UV and visible irradiation (290 nm ≤ λ ≤ 700 nm). γ-Fe 2 O 3 , α-FeOOH and α-Fe 2 O 3 demonstrated a ca. 40-900-fold increase in uptake kinetics upon irradiation, under our experimental conditions. In contrast, uptake kinetics on Fe 3 O 4 's surface displayed little dependence on irradiation. Relative humidity was shown to inhibit the effect of radiation on the uptake of Hg 0 (g) by α-Fe 2 O 3 . Size distributions, electronic properties, surface area and phase characterization of the iron(oxyhydr)oxide particles were studied to explain the uptake kinetics, and to provide insights into the mechanism of Hg 0 (g) loss. The adsorption capacity of Hg 0 (g) on α-Fe 2 O 3 was determined from the adsorption isotherm fitted with Langmuir, Freundlich and Elovich adsorption models. The implications of the results to atmospheric chemical processes are herein discussed. We herein report kinetic studies on UV-visible radiation (315 ≤ λ ≤ 700 nm) enhanced uptake of Hg 0 (g) by proxies for reactive components of mineral dust (nano γ-Fe 2 O 3 , α-FeOOH, α-Fe 2 O 3 and Fe 3 O 4 ) and propose possible reaction mechanisms.
doi_str_mv 10.1039/c7ra07401h
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c7ra07401h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c7ra07401h</sourcerecordid><originalsourceid>FETCH-rsc_primary_c7ra07401h3</originalsourceid><addsrcrecordid>eNqFTrFOwzAUtJCQqEoXdqTHlgwtdlJSlRWC2gmJskcP-6UxOLZlu6j5FP6WSCAxIMENd8Od7o6xC8EXgpfra7kKyFdLLroTNin4spoXvFqfsVmMr3xEdSOKSkzYxxMqjUk7C2Q7tJIUHHzCNwLXwmbPs30Oo6nDSJk7Dt2gQu6OWhFYtM5jSFoairUhmcaQlhAP3hvqySYMA2jbutB_TWT1bpsDvqM2-GJoATsiuH_c3sLv3-fstEUTafatU3b5UD_fbeYhysYH3Y_lzU-8nLKrv_zGq7b8r-MTWMdihA</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Radiation enhanced uptake of Hg0(g) on iron (oxyhydr)oxide nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra07401h</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kurien, Uday ; Hu, Zhenzhong ; Lee, Heonho ; Dastoor, Ashu P ; Ariya, Parisa A</creator><creatorcontrib>Kurien, Uday ; Hu, Zhenzhong ; Lee, Heonho ; Dastoor, Ashu P ; Ariya, Parisa A</creatorcontrib><description>Despite the proposed importance of atmospheric mercury (Hg) cycling, little is known about its heterogeneous chemistry, specifically on ubiquitous dust particle surfaces in the environment. To address this gap in knowledge, we herein report the uptake coefficients for the uptake of Hg 0 (g) on iron (oxyhydr)oxides (γ-Fe 2 O 3 , α-FeOOH, α-Fe 2 O 3 and Fe 3 O 4 ) nanoparticles, employed as proxies for reactive components of mineral dust. Hg 0 (g) -particle interactions were studied in a batch set-up, at ambient pressure (760 ± 5 Torr) and temperatures (295 ± 2 K) with UV and visible irradiation (290 nm ≤ λ ≤ 700 nm). γ-Fe 2 O 3 , α-FeOOH and α-Fe 2 O 3 demonstrated a ca. 40-900-fold increase in uptake kinetics upon irradiation, under our experimental conditions. In contrast, uptake kinetics on Fe 3 O 4 's surface displayed little dependence on irradiation. Relative humidity was shown to inhibit the effect of radiation on the uptake of Hg 0 (g) by α-Fe 2 O 3 . Size distributions, electronic properties, surface area and phase characterization of the iron(oxyhydr)oxide particles were studied to explain the uptake kinetics, and to provide insights into the mechanism of Hg 0 (g) loss. The adsorption capacity of Hg 0 (g) on α-Fe 2 O 3 was determined from the adsorption isotherm fitted with Langmuir, Freundlich and Elovich adsorption models. The implications of the results to atmospheric chemical processes are herein discussed. We herein report kinetic studies on UV-visible radiation (315 ≤ λ ≤ 700 nm) enhanced uptake of Hg 0 (g) by proxies for reactive components of mineral dust (nano γ-Fe 2 O 3 , α-FeOOH, α-Fe 2 O 3 and Fe 3 O 4 ) and propose possible reaction mechanisms.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c7ra07401h</identifier><language>eng</language><creationdate>2017-09</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Kurien, Uday</creatorcontrib><creatorcontrib>Hu, Zhenzhong</creatorcontrib><creatorcontrib>Lee, Heonho</creatorcontrib><creatorcontrib>Dastoor, Ashu P</creatorcontrib><creatorcontrib>Ariya, Parisa A</creatorcontrib><title>Radiation enhanced uptake of Hg0(g) on iron (oxyhydr)oxide nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra07401h</title><description>Despite the proposed importance of atmospheric mercury (Hg) cycling, little is known about its heterogeneous chemistry, specifically on ubiquitous dust particle surfaces in the environment. To address this gap in knowledge, we herein report the uptake coefficients for the uptake of Hg 0 (g) on iron (oxyhydr)oxides (γ-Fe 2 O 3 , α-FeOOH, α-Fe 2 O 3 and Fe 3 O 4 ) nanoparticles, employed as proxies for reactive components of mineral dust. Hg 0 (g) -particle interactions were studied in a batch set-up, at ambient pressure (760 ± 5 Torr) and temperatures (295 ± 2 K) with UV and visible irradiation (290 nm ≤ λ ≤ 700 nm). γ-Fe 2 O 3 , α-FeOOH and α-Fe 2 O 3 demonstrated a ca. 40-900-fold increase in uptake kinetics upon irradiation, under our experimental conditions. In contrast, uptake kinetics on Fe 3 O 4 's surface displayed little dependence on irradiation. Relative humidity was shown to inhibit the effect of radiation on the uptake of Hg 0 (g) by α-Fe 2 O 3 . Size distributions, electronic properties, surface area and phase characterization of the iron(oxyhydr)oxide particles were studied to explain the uptake kinetics, and to provide insights into the mechanism of Hg 0 (g) loss. The adsorption capacity of Hg 0 (g) on α-Fe 2 O 3 was determined from the adsorption isotherm fitted with Langmuir, Freundlich and Elovich adsorption models. The implications of the results to atmospheric chemical processes are herein discussed. We herein report kinetic studies on UV-visible radiation (315 ≤ λ ≤ 700 nm) enhanced uptake of Hg 0 (g) by proxies for reactive components of mineral dust (nano γ-Fe 2 O 3 , α-FeOOH, α-Fe 2 O 3 and Fe 3 O 4 ) and propose possible reaction mechanisms.</description><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFTrFOwzAUtJCQqEoXdqTHlgwtdlJSlRWC2gmJskcP-6UxOLZlu6j5FP6WSCAxIMENd8Od7o6xC8EXgpfra7kKyFdLLroTNin4spoXvFqfsVmMr3xEdSOKSkzYxxMqjUk7C2Q7tJIUHHzCNwLXwmbPs30Oo6nDSJk7Dt2gQu6OWhFYtM5jSFoairUhmcaQlhAP3hvqySYMA2jbutB_TWT1bpsDvqM2-GJoATsiuH_c3sLv3-fstEUTafatU3b5UD_fbeYhysYH3Y_lzU-8nLKrv_zGq7b8r-MTWMdihA</recordid><startdate>20170921</startdate><enddate>20170921</enddate><creator>Kurien, Uday</creator><creator>Hu, Zhenzhong</creator><creator>Lee, Heonho</creator><creator>Dastoor, Ashu P</creator><creator>Ariya, Parisa A</creator><scope/></search><sort><creationdate>20170921</creationdate><title>Radiation enhanced uptake of Hg0(g) on iron (oxyhydr)oxide nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra07401h</title><author>Kurien, Uday ; Hu, Zhenzhong ; Lee, Heonho ; Dastoor, Ashu P ; Ariya, Parisa A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c7ra07401h3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurien, Uday</creatorcontrib><creatorcontrib>Hu, Zhenzhong</creatorcontrib><creatorcontrib>Lee, Heonho</creatorcontrib><creatorcontrib>Dastoor, Ashu P</creatorcontrib><creatorcontrib>Ariya, Parisa A</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurien, Uday</au><au>Hu, Zhenzhong</au><au>Lee, Heonho</au><au>Dastoor, Ashu P</au><au>Ariya, Parisa A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation enhanced uptake of Hg0(g) on iron (oxyhydr)oxide nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra07401h</atitle><date>2017-09-21</date><risdate>2017</risdate><volume>7</volume><issue>71</issue><spage>451</spage><epage>4521</epage><pages>451-4521</pages><eissn>2046-2069</eissn><abstract>Despite the proposed importance of atmospheric mercury (Hg) cycling, little is known about its heterogeneous chemistry, specifically on ubiquitous dust particle surfaces in the environment. To address this gap in knowledge, we herein report the uptake coefficients for the uptake of Hg 0 (g) on iron (oxyhydr)oxides (γ-Fe 2 O 3 , α-FeOOH, α-Fe 2 O 3 and Fe 3 O 4 ) nanoparticles, employed as proxies for reactive components of mineral dust. Hg 0 (g) -particle interactions were studied in a batch set-up, at ambient pressure (760 ± 5 Torr) and temperatures (295 ± 2 K) with UV and visible irradiation (290 nm ≤ λ ≤ 700 nm). γ-Fe 2 O 3 , α-FeOOH and α-Fe 2 O 3 demonstrated a ca. 40-900-fold increase in uptake kinetics upon irradiation, under our experimental conditions. In contrast, uptake kinetics on Fe 3 O 4 's surface displayed little dependence on irradiation. Relative humidity was shown to inhibit the effect of radiation on the uptake of Hg 0 (g) by α-Fe 2 O 3 . Size distributions, electronic properties, surface area and phase characterization of the iron(oxyhydr)oxide particles were studied to explain the uptake kinetics, and to provide insights into the mechanism of Hg 0 (g) loss. The adsorption capacity of Hg 0 (g) on α-Fe 2 O 3 was determined from the adsorption isotherm fitted with Langmuir, Freundlich and Elovich adsorption models. The implications of the results to atmospheric chemical processes are herein discussed. We herein report kinetic studies on UV-visible radiation (315 ≤ λ ≤ 700 nm) enhanced uptake of Hg 0 (g) by proxies for reactive components of mineral dust (nano γ-Fe 2 O 3 , α-FeOOH, α-Fe 2 O 3 and Fe 3 O 4 ) and propose possible reaction mechanisms.</abstract><doi>10.1039/c7ra07401h</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2046-2069
ispartof
issn 2046-2069
language eng
recordid cdi_rsc_primary_c7ra07401h
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Radiation enhanced uptake of Hg0(g) on iron (oxyhydr)oxide nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra07401h
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation%20enhanced%20uptake%20of%20Hg0(g)%20on%20iron%20(oxyhydr)oxide%20nanoparticlesElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c7ra07401h&rft.au=Kurien,%20Uday&rft.date=2017-09-21&rft.volume=7&rft.issue=71&rft.spage=451&rft.epage=4521&rft.pages=451-4521&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c7ra07401h&rft_dat=%3Crsc%3Ec7ra07401h%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true