Doubling the power of DP4 for computational structure elucidation
A large-scale optimisation of density functional theory (DFT) conditions for computational NMR structure elucidation has been conducted by systematically screening the DFT functionals and statistical models. The extended PyDP4 workflow was tested on a diverse and challenging set of 42 biologically a...
Gespeichert in:
Veröffentlicht in: | Organic & biomolecular chemistry 2017-10, Vol.15 (42), p.8998-97 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 97 |
---|---|
container_issue | 42 |
container_start_page | 8998 |
container_title | Organic & biomolecular chemistry |
container_volume | 15 |
creator | Ermanis, K Parkes, K. E. B Agback, T Goodman, J. M |
description | A large-scale optimisation of density functional theory (DFT) conditions for computational NMR structure elucidation has been conducted by systematically screening the DFT functionals and statistical models. The extended PyDP4 workflow was tested on a diverse and challenging set of 42 biologically active and stereochemically rich compounds, including highly flexible molecules. MMFF/mPW1PW91/M06-2X in combination with a 2 Gaussian, 1 region statistical model was capable of identifying the correct diastereomer among up to an upper limit of 32 potential diastereomers. Overall a 2-fold reduction in structural uncertainty and a 7-fold reduction in model overconfidence have been achieved. Tools for rapid set-up and analysis of computational and experimental results, as well as for the statistical model generation, have been developed and are provided. All of this should facilitate rapid and reliable computational NMR structure elucidation, which has become a valuable tool to natural product chemists and synthetic chemists alike.
Improvements to the DP4 computational structure elucidation method have led to a 2-fold reduction in structural uncertainty and 7-fold improvement of statistical confidence. |
doi_str_mv | 10.1039/c7ob01379e |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c7ob01379e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1952533711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-1a488db4f56bc2233751172bd41bc11f29a4881c78a2fdbd2ad29010451719cc3</originalsourceid><addsrcrecordid>eNpFkEtLxDAURoMozji6ca9kKUI1N0knzXJePmBgXOi6JGmqlXZSkwbx39t5OK7u5X6Hj8tB6BLIHRAm741wmgAT0h6hIXAhEpIyeXzYKRmgsxA-CQEpxvwUDagknFPBhmgyd1HX1foddx8Wt-7beuxKPH_huHQeG9e0sVNd5daqxqHz0XTRW2zraKpiez9HJ6Wqg73YzxF6e1i8zp6S5erxeTZZJoZl4y4BxbOs0LxMx9pQyphIAQTVBQdtAEoqNwAYkSlaFrqgqui_BMJTECCNYSN0s-ttvfuKNnR5UwVj61qtrYshB5nStK8F6NHbHWq8C8HbMm991Sj_kwPJN8rymVhNt8oWPXy97426scUB_XPUA1c7wAdzSP-ds1_O1m9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952533711</pqid></control><display><type>article</type><title>Doubling the power of DP4 for computational structure elucidation</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ermanis, K ; Parkes, K. E. B ; Agback, T ; Goodman, J. M</creator><creatorcontrib>Ermanis, K ; Parkes, K. E. B ; Agback, T ; Goodman, J. M</creatorcontrib><description>A large-scale optimisation of density functional theory (DFT) conditions for computational NMR structure elucidation has been conducted by systematically screening the DFT functionals and statistical models. The extended PyDP4 workflow was tested on a diverse and challenging set of 42 biologically active and stereochemically rich compounds, including highly flexible molecules. MMFF/mPW1PW91/M06-2X in combination with a 2 Gaussian, 1 region statistical model was capable of identifying the correct diastereomer among up to an upper limit of 32 potential diastereomers. Overall a 2-fold reduction in structural uncertainty and a 7-fold reduction in model overconfidence have been achieved. Tools for rapid set-up and analysis of computational and experimental results, as well as for the statistical model generation, have been developed and are provided. All of this should facilitate rapid and reliable computational NMR structure elucidation, which has become a valuable tool to natural product chemists and synthetic chemists alike.
Improvements to the DP4 computational structure elucidation method have led to a 2-fold reduction in structural uncertainty and 7-fold improvement of statistical confidence.</description><identifier>ISSN: 1477-0520</identifier><identifier>EISSN: 1477-0539</identifier><identifier>DOI: 10.1039/c7ob01379e</identifier><identifier>PMID: 29044273</identifier><language>eng</language><publisher>England</publisher><ispartof>Organic & biomolecular chemistry, 2017-10, Vol.15 (42), p.8998-97</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-1a488db4f56bc2233751172bd41bc11f29a4881c78a2fdbd2ad29010451719cc3</citedby><cites>FETCH-LOGICAL-c386t-1a488db4f56bc2233751172bd41bc11f29a4881c78a2fdbd2ad29010451719cc3</cites><orcidid>0000-0001-9703-8758 ; 0000-0001-9515-0084 ; 0000-0002-8693-9136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29044273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ermanis, K</creatorcontrib><creatorcontrib>Parkes, K. E. B</creatorcontrib><creatorcontrib>Agback, T</creatorcontrib><creatorcontrib>Goodman, J. M</creatorcontrib><title>Doubling the power of DP4 for computational structure elucidation</title><title>Organic & biomolecular chemistry</title><addtitle>Org Biomol Chem</addtitle><description>A large-scale optimisation of density functional theory (DFT) conditions for computational NMR structure elucidation has been conducted by systematically screening the DFT functionals and statistical models. The extended PyDP4 workflow was tested on a diverse and challenging set of 42 biologically active and stereochemically rich compounds, including highly flexible molecules. MMFF/mPW1PW91/M06-2X in combination with a 2 Gaussian, 1 region statistical model was capable of identifying the correct diastereomer among up to an upper limit of 32 potential diastereomers. Overall a 2-fold reduction in structural uncertainty and a 7-fold reduction in model overconfidence have been achieved. Tools for rapid set-up and analysis of computational and experimental results, as well as for the statistical model generation, have been developed and are provided. All of this should facilitate rapid and reliable computational NMR structure elucidation, which has become a valuable tool to natural product chemists and synthetic chemists alike.
Improvements to the DP4 computational structure elucidation method have led to a 2-fold reduction in structural uncertainty and 7-fold improvement of statistical confidence.</description><issn>1477-0520</issn><issn>1477-0539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLxDAURoMozji6ca9kKUI1N0knzXJePmBgXOi6JGmqlXZSkwbx39t5OK7u5X6Hj8tB6BLIHRAm741wmgAT0h6hIXAhEpIyeXzYKRmgsxA-CQEpxvwUDagknFPBhmgyd1HX1foddx8Wt-7beuxKPH_huHQeG9e0sVNd5daqxqHz0XTRW2zraKpiez9HJ6Wqg73YzxF6e1i8zp6S5erxeTZZJoZl4y4BxbOs0LxMx9pQyphIAQTVBQdtAEoqNwAYkSlaFrqgqui_BMJTECCNYSN0s-ttvfuKNnR5UwVj61qtrYshB5nStK8F6NHbHWq8C8HbMm991Sj_kwPJN8rymVhNt8oWPXy97426scUB_XPUA1c7wAdzSP-ds1_O1m9o</recordid><startdate>20171031</startdate><enddate>20171031</enddate><creator>Ermanis, K</creator><creator>Parkes, K. E. B</creator><creator>Agback, T</creator><creator>Goodman, J. M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9703-8758</orcidid><orcidid>https://orcid.org/0000-0001-9515-0084</orcidid><orcidid>https://orcid.org/0000-0002-8693-9136</orcidid></search><sort><creationdate>20171031</creationdate><title>Doubling the power of DP4 for computational structure elucidation</title><author>Ermanis, K ; Parkes, K. E. B ; Agback, T ; Goodman, J. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-1a488db4f56bc2233751172bd41bc11f29a4881c78a2fdbd2ad29010451719cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ermanis, K</creatorcontrib><creatorcontrib>Parkes, K. E. B</creatorcontrib><creatorcontrib>Agback, T</creatorcontrib><creatorcontrib>Goodman, J. M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Organic & biomolecular chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ermanis, K</au><au>Parkes, K. E. B</au><au>Agback, T</au><au>Goodman, J. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doubling the power of DP4 for computational structure elucidation</atitle><jtitle>Organic & biomolecular chemistry</jtitle><addtitle>Org Biomol Chem</addtitle><date>2017-10-31</date><risdate>2017</risdate><volume>15</volume><issue>42</issue><spage>8998</spage><epage>97</epage><pages>8998-97</pages><issn>1477-0520</issn><eissn>1477-0539</eissn><abstract>A large-scale optimisation of density functional theory (DFT) conditions for computational NMR structure elucidation has been conducted by systematically screening the DFT functionals and statistical models. The extended PyDP4 workflow was tested on a diverse and challenging set of 42 biologically active and stereochemically rich compounds, including highly flexible molecules. MMFF/mPW1PW91/M06-2X in combination with a 2 Gaussian, 1 region statistical model was capable of identifying the correct diastereomer among up to an upper limit of 32 potential diastereomers. Overall a 2-fold reduction in structural uncertainty and a 7-fold reduction in model overconfidence have been achieved. Tools for rapid set-up and analysis of computational and experimental results, as well as for the statistical model generation, have been developed and are provided. All of this should facilitate rapid and reliable computational NMR structure elucidation, which has become a valuable tool to natural product chemists and synthetic chemists alike.
Improvements to the DP4 computational structure elucidation method have led to a 2-fold reduction in structural uncertainty and 7-fold improvement of statistical confidence.</abstract><cop>England</cop><pmid>29044273</pmid><doi>10.1039/c7ob01379e</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9703-8758</orcidid><orcidid>https://orcid.org/0000-0001-9515-0084</orcidid><orcidid>https://orcid.org/0000-0002-8693-9136</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-0520 |
ispartof | Organic & biomolecular chemistry, 2017-10, Vol.15 (42), p.8998-97 |
issn | 1477-0520 1477-0539 |
language | eng |
recordid | cdi_rsc_primary_c7ob01379e |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | Doubling the power of DP4 for computational structure elucidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doubling%20the%20power%20of%20DP4%20for%20computational%20structure%20elucidation&rft.jtitle=Organic%20&%20biomolecular%20chemistry&rft.au=Ermanis,%20K&rft.date=2017-10-31&rft.volume=15&rft.issue=42&rft.spage=8998&rft.epage=97&rft.pages=8998-97&rft.issn=1477-0520&rft.eissn=1477-0539&rft_id=info:doi/10.1039/c7ob01379e&rft_dat=%3Cproquest_rsc_p%3E1952533711%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952533711&rft_id=info:pmid/29044273&rfr_iscdi=true |