Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensingElectronic supplementary information (ESI) available. See DOI: 10.1039/c7lc01223c

Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Soenksen, L. R, Kassis, T, Noh, M, Griffith, L. G, Trumper, D. L
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 914
container_issue 6
container_start_page 92
container_title
container_volume 18
creator Soenksen, L. R
Kassis, T
Noh, M
Griffith, L. G
Trumper, D. L
description Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (
doi_str_mv 10.1039/c7lc01223c
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c7lc01223c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c7lc01223c</sourcerecordid><originalsourceid>FETCH-rsc_primary_c7lc01223c3</originalsourceid><addsrcrecordid>eNqFjztPw0AQhE8IJMKjoUfaEgqHuzjgmDYYkYoi9NFlvbYX7mHdnSPln_HzMAhBQUE1I83oG40QF0pOlczLGywMSjWb5XggJmpe5JlUi_Lwx5fFsTiJ8VVKdTu_W0zE-9L4SHVmvO-hIaq3Gt8AvUvBG2h8AMsYfGMGrhkh7mMiGyF1wQ9tB3pI3upENaDuNXLiHcFXGTritksQyUV2bWUIR6T7ZAx9b8iSSzrsgd04MiLYO7iq1qtr0DvNRm8NTWFNBA_Pq3v4--9MHDXaRDr_1lNx-Vi9LJ-yEHHTB7YjfPNbz__LPwDQx2WF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensingElectronic supplementary information (ESI) available. See DOI: 10.1039/c7lc01223c</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Soenksen, L. R ; Kassis, T ; Noh, M ; Griffith, L. G ; Trumper, D. L</creator><creatorcontrib>Soenksen, L. R ; Kassis, T ; Noh, M ; Griffith, L. G ; Trumper, D. L</creatorcontrib><description>Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (&lt;1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications. Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c7lc01223c</identifier><creationdate>2018-03</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soenksen, L. R</creatorcontrib><creatorcontrib>Kassis, T</creatorcontrib><creatorcontrib>Noh, M</creatorcontrib><creatorcontrib>Griffith, L. G</creatorcontrib><creatorcontrib>Trumper, D. L</creatorcontrib><title>Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensingElectronic supplementary information (ESI) available. See DOI: 10.1039/c7lc01223c</title><description>Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (&lt;1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications. Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications.</description><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjztPw0AQhE8IJMKjoUfaEgqHuzjgmDYYkYoi9NFlvbYX7mHdnSPln_HzMAhBQUE1I83oG40QF0pOlczLGywMSjWb5XggJmpe5JlUi_Lwx5fFsTiJ8VVKdTu_W0zE-9L4SHVmvO-hIaq3Gt8AvUvBG2h8AMsYfGMGrhkh7mMiGyF1wQ9tB3pI3upENaDuNXLiHcFXGTritksQyUV2bWUIR6T7ZAx9b8iSSzrsgd04MiLYO7iq1qtr0DvNRm8NTWFNBA_Pq3v4--9MHDXaRDr_1lNx-Vi9LJ-yEHHTB7YjfPNbz__LPwDQx2WF</recordid><startdate>20180313</startdate><enddate>20180313</enddate><creator>Soenksen, L. R</creator><creator>Kassis, T</creator><creator>Noh, M</creator><creator>Griffith, L. G</creator><creator>Trumper, D. L</creator><scope/></search><sort><creationdate>20180313</creationdate><title>Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensingElectronic supplementary information (ESI) available. See DOI: 10.1039/c7lc01223c</title><author>Soenksen, L. R ; Kassis, T ; Noh, M ; Griffith, L. G ; Trumper, D. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c7lc01223c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soenksen, L. R</creatorcontrib><creatorcontrib>Kassis, T</creatorcontrib><creatorcontrib>Noh, M</creatorcontrib><creatorcontrib>Griffith, L. G</creatorcontrib><creatorcontrib>Trumper, D. L</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soenksen, L. R</au><au>Kassis, T</au><au>Noh, M</au><au>Griffith, L. G</au><au>Trumper, D. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensingElectronic supplementary information (ESI) available. See DOI: 10.1039/c7lc01223c</atitle><date>2018-03-13</date><risdate>2018</risdate><volume>18</volume><issue>6</issue><spage>92</spage><epage>914</epage><pages>92-914</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (&lt;1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications. Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications.</abstract><doi>10.1039/c7lc01223c</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof
issn 1473-0197
1473-0189
language
recordid cdi_rsc_primary_c7lc01223c
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
title Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensingElectronic supplementary information (ESI) available. See DOI: 10.1039/c7lc01223c
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A14%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-loop%20feedback%20control%20for%20microfluidic%20systems%20through%20automated%20capacitive%20fluid%20height%20sensingElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c7lc01223c&rft.au=Soenksen,%20L.%20R&rft.date=2018-03-13&rft.volume=18&rft.issue=6&rft.spage=92&rft.epage=914&rft.pages=92-914&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c7lc01223c&rft_dat=%3Crsc%3Ec7lc01223c%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true