BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments
Hexagonal boron nitride nanoparticles (BNNPs) with different amounts of boron oxide on their surfaces were used as catalyst carriers. BNNPs/Ag nanohybrids were produced via ultraviolet (UV) decomposition of AgNO 3 in a mixture of polyethylene glycol and BNNPs. High temperature (1600 °C, 1.5 h) vacuu...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2018, Vol.8 (6), p.1652-1662 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1662 |
---|---|
container_issue | 6 |
container_start_page | 1652 |
container_title | Catalysis science & technology |
container_volume | 8 |
creator | Konopatsky, Anton S Firestein, Konstantin L Leybo, Denis V Popov, Zakhar I Larionov, Konstantin V Steinman, Alexander E Kovalskii, Andrey M Matveev, Andrei T Manakhov, Anton M Sorokin, Pavel B Golberg, Dmitri Shtansky, Dmitry V |
description | Hexagonal boron nitride nanoparticles (BNNPs) with different amounts of boron oxide on their surfaces were used as catalyst carriers. BNNPs/Ag nanohybrids were produced
via
ultraviolet (UV) decomposition of AgNO
3
in a mixture of polyethylene glycol and BNNPs. High temperature (1600 °C, 1.5 h) vacuum annealing of BNNPs promoted small size (5-10 nm) Ag nanoparticle (AgNPs) formation on BN surfaces with narrow size distribution, whereas using BNNPs in their as-produced state resulted in large AgNPs with various sizes. An increase in the B
2
O
3
content on the BNNPs surfaces (up to a certain point) during BNNP pre-annealing in air led to larger amounts of AgNPs on their surfaces. Experimental results were confirmed by theoretical calculations of the adhesion energy of the (111)
Ag
with (0001)
h
-BN
and (100)
B
2
O
3
surfaces. In contrast to the nonwettability of the
h
-BN surface by AgNPs, silver bound well to B
2
O
3
with the formation of a covalent bond at the interface. Excessive fraction of B
2
O
3
, however, was not beneficial in terms of obtaining the optimal contents of AgNPs. Results of catalytic activity tests demonstrated that BNNPs/Ag nanohybrids synthesized using BNNPs with an optimized amount of B
2
O
3
possess significantly enhanced catalytic activity compared to BNNPs without or with excess amounts of oxide. Finally, the catalytic activity of nanohybrids was theoretically analyzed using density functional theory (DFT) calculations.
BNNPs/Ag nanohybrids with an optimal amount of B
2
O
3
demonstrated a higher catalytic activity. |
doi_str_mv | 10.1039/c7cy02207g |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c7cy02207g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015314282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-e9f747fc15b94b6ee3d91e5b86062a32892021eb630701bf8835be21ea3b27fe3</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRsNRevAsL3oTY_Uo28VaDVqHoQT14CrubSZNSN3F3q-bfG43Uuczw8jAzPAidUnJJCc_mRpqeMEbk-gBNGBEiEjKhh_s55sdo5v2GDCUySlI2QU_XD9gq23bKhcZsYb5Y47rXrik9_mxCjcHWyhoosVFBbfsBwsqE5qMJ_RUONbSux8qWGL46cM0b2OBP0FGlth5mf32KXm5vnvO7aPW4vM8Xq8jwWIQIskoKWRka60zoBICXGYVYpwlJmOIszRhhFHTCiSRUV2nKYw1DorhmsgI-Refj3s617zvwodi0O2eHkwUjNOZUsJQN1MVIGdd676AquuFP5fqCkuLHW5HL_PXX23KAz0bYebPn_r3ybymvaZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015314282</pqid></control><display><type>article</type><title>BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Konopatsky, Anton S ; Firestein, Konstantin L ; Leybo, Denis V ; Popov, Zakhar I ; Larionov, Konstantin V ; Steinman, Alexander E ; Kovalskii, Andrey M ; Matveev, Andrei T ; Manakhov, Anton M ; Sorokin, Pavel B ; Golberg, Dmitri ; Shtansky, Dmitry V</creator><creatorcontrib>Konopatsky, Anton S ; Firestein, Konstantin L ; Leybo, Denis V ; Popov, Zakhar I ; Larionov, Konstantin V ; Steinman, Alexander E ; Kovalskii, Andrey M ; Matveev, Andrei T ; Manakhov, Anton M ; Sorokin, Pavel B ; Golberg, Dmitri ; Shtansky, Dmitry V</creatorcontrib><description>Hexagonal boron nitride nanoparticles (BNNPs) with different amounts of boron oxide on their surfaces were used as catalyst carriers. BNNPs/Ag nanohybrids were produced
via
ultraviolet (UV) decomposition of AgNO
3
in a mixture of polyethylene glycol and BNNPs. High temperature (1600 °C, 1.5 h) vacuum annealing of BNNPs promoted small size (5-10 nm) Ag nanoparticle (AgNPs) formation on BN surfaces with narrow size distribution, whereas using BNNPs in their as-produced state resulted in large AgNPs with various sizes. An increase in the B
2
O
3
content on the BNNPs surfaces (up to a certain point) during BNNP pre-annealing in air led to larger amounts of AgNPs on their surfaces. Experimental results were confirmed by theoretical calculations of the adhesion energy of the (111)
Ag
with (0001)
h
-BN
and (100)
B
2
O
3
surfaces. In contrast to the nonwettability of the
h
-BN surface by AgNPs, silver bound well to B
2
O
3
with the formation of a covalent bond at the interface. Excessive fraction of B
2
O
3
, however, was not beneficial in terms of obtaining the optimal contents of AgNPs. Results of catalytic activity tests demonstrated that BNNPs/Ag nanohybrids synthesized using BNNPs with an optimized amount of B
2
O
3
possess significantly enhanced catalytic activity compared to BNNPs without or with excess amounts of oxide. Finally, the catalytic activity of nanohybrids was theoretically analyzed using density functional theory (DFT) calculations.
BNNPs/Ag nanohybrids with an optimal amount of B
2
O
3
demonstrated a higher catalytic activity.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/c7cy02207g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adhesive bonding ; Boron nitride ; Boron oxides ; Catalysis ; Catalytic activity ; Chemical synthesis ; Density functional theory ; Mathematical analysis ; Nanoparticles ; Polyethylene glycol ; Silver ; Size distribution ; Vacuum annealing</subject><ispartof>Catalysis science & technology, 2018, Vol.8 (6), p.1652-1662</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-e9f747fc15b94b6ee3d91e5b86062a32892021eb630701bf8835be21ea3b27fe3</citedby><cites>FETCH-LOGICAL-c354t-e9f747fc15b94b6ee3d91e5b86062a32892021eb630701bf8835be21ea3b27fe3</cites><orcidid>0000-0002-2597-6611 ; 0000-0001-5248-1799 ; 0000-0003-3447-2092 ; 0000-0002-0928-6477 ; 0000-0003-4517-1682 ; 0000-0003-2298-6539 ; 0000-0003-4882-401X ; 0000-0001-7304-2461 ; 0000-0002-3822-8102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Konopatsky, Anton S</creatorcontrib><creatorcontrib>Firestein, Konstantin L</creatorcontrib><creatorcontrib>Leybo, Denis V</creatorcontrib><creatorcontrib>Popov, Zakhar I</creatorcontrib><creatorcontrib>Larionov, Konstantin V</creatorcontrib><creatorcontrib>Steinman, Alexander E</creatorcontrib><creatorcontrib>Kovalskii, Andrey M</creatorcontrib><creatorcontrib>Matveev, Andrei T</creatorcontrib><creatorcontrib>Manakhov, Anton M</creatorcontrib><creatorcontrib>Sorokin, Pavel B</creatorcontrib><creatorcontrib>Golberg, Dmitri</creatorcontrib><creatorcontrib>Shtansky, Dmitry V</creatorcontrib><title>BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments</title><title>Catalysis science & technology</title><description>Hexagonal boron nitride nanoparticles (BNNPs) with different amounts of boron oxide on their surfaces were used as catalyst carriers. BNNPs/Ag nanohybrids were produced
via
ultraviolet (UV) decomposition of AgNO
3
in a mixture of polyethylene glycol and BNNPs. High temperature (1600 °C, 1.5 h) vacuum annealing of BNNPs promoted small size (5-10 nm) Ag nanoparticle (AgNPs) formation on BN surfaces with narrow size distribution, whereas using BNNPs in their as-produced state resulted in large AgNPs with various sizes. An increase in the B
2
O
3
content on the BNNPs surfaces (up to a certain point) during BNNP pre-annealing in air led to larger amounts of AgNPs on their surfaces. Experimental results were confirmed by theoretical calculations of the adhesion energy of the (111)
Ag
with (0001)
h
-BN
and (100)
B
2
O
3
surfaces. In contrast to the nonwettability of the
h
-BN surface by AgNPs, silver bound well to B
2
O
3
with the formation of a covalent bond at the interface. Excessive fraction of B
2
O
3
, however, was not beneficial in terms of obtaining the optimal contents of AgNPs. Results of catalytic activity tests demonstrated that BNNPs/Ag nanohybrids synthesized using BNNPs with an optimized amount of B
2
O
3
possess significantly enhanced catalytic activity compared to BNNPs without or with excess amounts of oxide. Finally, the catalytic activity of nanohybrids was theoretically analyzed using density functional theory (DFT) calculations.
BNNPs/Ag nanohybrids with an optimal amount of B
2
O
3
demonstrated a higher catalytic activity.</description><subject>Adhesive bonding</subject><subject>Boron nitride</subject><subject>Boron oxides</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chemical synthesis</subject><subject>Density functional theory</subject><subject>Mathematical analysis</subject><subject>Nanoparticles</subject><subject>Polyethylene glycol</subject><subject>Silver</subject><subject>Size distribution</subject><subject>Vacuum annealing</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AQhhdRsNRevAsL3oTY_Uo28VaDVqHoQT14CrubSZNSN3F3q-bfG43Uuczw8jAzPAidUnJJCc_mRpqeMEbk-gBNGBEiEjKhh_s55sdo5v2GDCUySlI2QU_XD9gq23bKhcZsYb5Y47rXrik9_mxCjcHWyhoosVFBbfsBwsqE5qMJ_RUONbSux8qWGL46cM0b2OBP0FGlth5mf32KXm5vnvO7aPW4vM8Xq8jwWIQIskoKWRka60zoBICXGYVYpwlJmOIszRhhFHTCiSRUV2nKYw1DorhmsgI-Refj3s617zvwodi0O2eHkwUjNOZUsJQN1MVIGdd676AquuFP5fqCkuLHW5HL_PXX23KAz0bYebPn_r3ybymvaZM</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Konopatsky, Anton S</creator><creator>Firestein, Konstantin L</creator><creator>Leybo, Denis V</creator><creator>Popov, Zakhar I</creator><creator>Larionov, Konstantin V</creator><creator>Steinman, Alexander E</creator><creator>Kovalskii, Andrey M</creator><creator>Matveev, Andrei T</creator><creator>Manakhov, Anton M</creator><creator>Sorokin, Pavel B</creator><creator>Golberg, Dmitri</creator><creator>Shtansky, Dmitry V</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2597-6611</orcidid><orcidid>https://orcid.org/0000-0001-5248-1799</orcidid><orcidid>https://orcid.org/0000-0003-3447-2092</orcidid><orcidid>https://orcid.org/0000-0002-0928-6477</orcidid><orcidid>https://orcid.org/0000-0003-4517-1682</orcidid><orcidid>https://orcid.org/0000-0003-2298-6539</orcidid><orcidid>https://orcid.org/0000-0003-4882-401X</orcidid><orcidid>https://orcid.org/0000-0001-7304-2461</orcidid><orcidid>https://orcid.org/0000-0002-3822-8102</orcidid></search><sort><creationdate>2018</creationdate><title>BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments</title><author>Konopatsky, Anton S ; Firestein, Konstantin L ; Leybo, Denis V ; Popov, Zakhar I ; Larionov, Konstantin V ; Steinman, Alexander E ; Kovalskii, Andrey M ; Matveev, Andrei T ; Manakhov, Anton M ; Sorokin, Pavel B ; Golberg, Dmitri ; Shtansky, Dmitry V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-e9f747fc15b94b6ee3d91e5b86062a32892021eb630701bf8835be21ea3b27fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adhesive bonding</topic><topic>Boron nitride</topic><topic>Boron oxides</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chemical synthesis</topic><topic>Density functional theory</topic><topic>Mathematical analysis</topic><topic>Nanoparticles</topic><topic>Polyethylene glycol</topic><topic>Silver</topic><topic>Size distribution</topic><topic>Vacuum annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konopatsky, Anton S</creatorcontrib><creatorcontrib>Firestein, Konstantin L</creatorcontrib><creatorcontrib>Leybo, Denis V</creatorcontrib><creatorcontrib>Popov, Zakhar I</creatorcontrib><creatorcontrib>Larionov, Konstantin V</creatorcontrib><creatorcontrib>Steinman, Alexander E</creatorcontrib><creatorcontrib>Kovalskii, Andrey M</creatorcontrib><creatorcontrib>Matveev, Andrei T</creatorcontrib><creatorcontrib>Manakhov, Anton M</creatorcontrib><creatorcontrib>Sorokin, Pavel B</creatorcontrib><creatorcontrib>Golberg, Dmitri</creatorcontrib><creatorcontrib>Shtansky, Dmitry V</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konopatsky, Anton S</au><au>Firestein, Konstantin L</au><au>Leybo, Denis V</au><au>Popov, Zakhar I</au><au>Larionov, Konstantin V</au><au>Steinman, Alexander E</au><au>Kovalskii, Andrey M</au><au>Matveev, Andrei T</au><au>Manakhov, Anton M</au><au>Sorokin, Pavel B</au><au>Golberg, Dmitri</au><au>Shtansky, Dmitry V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments</atitle><jtitle>Catalysis science & technology</jtitle><date>2018</date><risdate>2018</risdate><volume>8</volume><issue>6</issue><spage>1652</spage><epage>1662</epage><pages>1652-1662</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>Hexagonal boron nitride nanoparticles (BNNPs) with different amounts of boron oxide on their surfaces were used as catalyst carriers. BNNPs/Ag nanohybrids were produced
via
ultraviolet (UV) decomposition of AgNO
3
in a mixture of polyethylene glycol and BNNPs. High temperature (1600 °C, 1.5 h) vacuum annealing of BNNPs promoted small size (5-10 nm) Ag nanoparticle (AgNPs) formation on BN surfaces with narrow size distribution, whereas using BNNPs in their as-produced state resulted in large AgNPs with various sizes. An increase in the B
2
O
3
content on the BNNPs surfaces (up to a certain point) during BNNP pre-annealing in air led to larger amounts of AgNPs on their surfaces. Experimental results were confirmed by theoretical calculations of the adhesion energy of the (111)
Ag
with (0001)
h
-BN
and (100)
B
2
O
3
surfaces. In contrast to the nonwettability of the
h
-BN surface by AgNPs, silver bound well to B
2
O
3
with the formation of a covalent bond at the interface. Excessive fraction of B
2
O
3
, however, was not beneficial in terms of obtaining the optimal contents of AgNPs. Results of catalytic activity tests demonstrated that BNNPs/Ag nanohybrids synthesized using BNNPs with an optimized amount of B
2
O
3
possess significantly enhanced catalytic activity compared to BNNPs without or with excess amounts of oxide. Finally, the catalytic activity of nanohybrids was theoretically analyzed using density functional theory (DFT) calculations.
BNNPs/Ag nanohybrids with an optimal amount of B
2
O
3
demonstrated a higher catalytic activity.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7cy02207g</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2597-6611</orcidid><orcidid>https://orcid.org/0000-0001-5248-1799</orcidid><orcidid>https://orcid.org/0000-0003-3447-2092</orcidid><orcidid>https://orcid.org/0000-0002-0928-6477</orcidid><orcidid>https://orcid.org/0000-0003-4517-1682</orcidid><orcidid>https://orcid.org/0000-0003-2298-6539</orcidid><orcidid>https://orcid.org/0000-0003-4882-401X</orcidid><orcidid>https://orcid.org/0000-0001-7304-2461</orcidid><orcidid>https://orcid.org/0000-0002-3822-8102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2044-4753 |
ispartof | Catalysis science & technology, 2018, Vol.8 (6), p.1652-1662 |
issn | 2044-4753 2044-4761 |
language | eng |
recordid | cdi_rsc_primary_c7cy02207g |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Adhesive bonding Boron nitride Boron oxides Catalysis Catalytic activity Chemical synthesis Density functional theory Mathematical analysis Nanoparticles Polyethylene glycol Silver Size distribution Vacuum annealing |
title | BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BN%20nanoparticle/Ag%20hybrids%20with%20enhanced%20catalytic%20activity:%20theory%20and%20experiments&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Konopatsky,%20Anton%20S&rft.date=2018&rft.volume=8&rft.issue=6&rft.spage=1652&rft.epage=1662&rft.pages=1652-1662&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/c7cy02207g&rft_dat=%3Cproquest_rsc_p%3E2015314282%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015314282&rft_id=info:pmid/&rfr_iscdi=true |