BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments

Hexagonal boron nitride nanoparticles (BNNPs) with different amounts of boron oxide on their surfaces were used as catalyst carriers. BNNPs/Ag nanohybrids were produced via ultraviolet (UV) decomposition of AgNO 3 in a mixture of polyethylene glycol and BNNPs. High temperature (1600 °C, 1.5 h) vacuu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2018, Vol.8 (6), p.1652-1662
Hauptverfasser: Konopatsky, Anton S, Firestein, Konstantin L, Leybo, Denis V, Popov, Zakhar I, Larionov, Konstantin V, Steinman, Alexander E, Kovalskii, Andrey M, Matveev, Andrei T, Manakhov, Anton M, Sorokin, Pavel B, Golberg, Dmitri, Shtansky, Dmitry V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1662
container_issue 6
container_start_page 1652
container_title Catalysis science & technology
container_volume 8
creator Konopatsky, Anton S
Firestein, Konstantin L
Leybo, Denis V
Popov, Zakhar I
Larionov, Konstantin V
Steinman, Alexander E
Kovalskii, Andrey M
Matveev, Andrei T
Manakhov, Anton M
Sorokin, Pavel B
Golberg, Dmitri
Shtansky, Dmitry V
description Hexagonal boron nitride nanoparticles (BNNPs) with different amounts of boron oxide on their surfaces were used as catalyst carriers. BNNPs/Ag nanohybrids were produced via ultraviolet (UV) decomposition of AgNO 3 in a mixture of polyethylene glycol and BNNPs. High temperature (1600 °C, 1.5 h) vacuum annealing of BNNPs promoted small size (5-10 nm) Ag nanoparticle (AgNPs) formation on BN surfaces with narrow size distribution, whereas using BNNPs in their as-produced state resulted in large AgNPs with various sizes. An increase in the B 2 O 3 content on the BNNPs surfaces (up to a certain point) during BNNP pre-annealing in air led to larger amounts of AgNPs on their surfaces. Experimental results were confirmed by theoretical calculations of the adhesion energy of the (111) Ag with (0001) h -BN and (100) B 2 O 3 surfaces. In contrast to the nonwettability of the h -BN surface by AgNPs, silver bound well to B 2 O 3 with the formation of a covalent bond at the interface. Excessive fraction of B 2 O 3 , however, was not beneficial in terms of obtaining the optimal contents of AgNPs. Results of catalytic activity tests demonstrated that BNNPs/Ag nanohybrids synthesized using BNNPs with an optimized amount of B 2 O 3 possess significantly enhanced catalytic activity compared to BNNPs without or with excess amounts of oxide. Finally, the catalytic activity of nanohybrids was theoretically analyzed using density functional theory (DFT) calculations. BNNPs/Ag nanohybrids with an optimal amount of B 2 O 3 demonstrated a higher catalytic activity.
doi_str_mv 10.1039/c7cy02207g
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c7cy02207g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2015314282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-e9f747fc15b94b6ee3d91e5b86062a32892021eb630701bf8835be21ea3b27fe3</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRsNRevAsL3oTY_Uo28VaDVqHoQT14CrubSZNSN3F3q-bfG43Uuczw8jAzPAidUnJJCc_mRpqeMEbk-gBNGBEiEjKhh_s55sdo5v2GDCUySlI2QU_XD9gq23bKhcZsYb5Y47rXrik9_mxCjcHWyhoosVFBbfsBwsqE5qMJ_RUONbSux8qWGL46cM0b2OBP0FGlth5mf32KXm5vnvO7aPW4vM8Xq8jwWIQIskoKWRka60zoBICXGYVYpwlJmOIszRhhFHTCiSRUV2nKYw1DorhmsgI-Refj3s617zvwodi0O2eHkwUjNOZUsJQN1MVIGdd676AquuFP5fqCkuLHW5HL_PXX23KAz0bYebPn_r3ybymvaZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015314282</pqid></control><display><type>article</type><title>BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Konopatsky, Anton S ; Firestein, Konstantin L ; Leybo, Denis V ; Popov, Zakhar I ; Larionov, Konstantin V ; Steinman, Alexander E ; Kovalskii, Andrey M ; Matveev, Andrei T ; Manakhov, Anton M ; Sorokin, Pavel B ; Golberg, Dmitri ; Shtansky, Dmitry V</creator><creatorcontrib>Konopatsky, Anton S ; Firestein, Konstantin L ; Leybo, Denis V ; Popov, Zakhar I ; Larionov, Konstantin V ; Steinman, Alexander E ; Kovalskii, Andrey M ; Matveev, Andrei T ; Manakhov, Anton M ; Sorokin, Pavel B ; Golberg, Dmitri ; Shtansky, Dmitry V</creatorcontrib><description>Hexagonal boron nitride nanoparticles (BNNPs) with different amounts of boron oxide on their surfaces were used as catalyst carriers. BNNPs/Ag nanohybrids were produced via ultraviolet (UV) decomposition of AgNO 3 in a mixture of polyethylene glycol and BNNPs. High temperature (1600 °C, 1.5 h) vacuum annealing of BNNPs promoted small size (5-10 nm) Ag nanoparticle (AgNPs) formation on BN surfaces with narrow size distribution, whereas using BNNPs in their as-produced state resulted in large AgNPs with various sizes. An increase in the B 2 O 3 content on the BNNPs surfaces (up to a certain point) during BNNP pre-annealing in air led to larger amounts of AgNPs on their surfaces. Experimental results were confirmed by theoretical calculations of the adhesion energy of the (111) Ag with (0001) h -BN and (100) B 2 O 3 surfaces. In contrast to the nonwettability of the h -BN surface by AgNPs, silver bound well to B 2 O 3 with the formation of a covalent bond at the interface. Excessive fraction of B 2 O 3 , however, was not beneficial in terms of obtaining the optimal contents of AgNPs. Results of catalytic activity tests demonstrated that BNNPs/Ag nanohybrids synthesized using BNNPs with an optimized amount of B 2 O 3 possess significantly enhanced catalytic activity compared to BNNPs without or with excess amounts of oxide. Finally, the catalytic activity of nanohybrids was theoretically analyzed using density functional theory (DFT) calculations. BNNPs/Ag nanohybrids with an optimal amount of B 2 O 3 demonstrated a higher catalytic activity.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/c7cy02207g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adhesive bonding ; Boron nitride ; Boron oxides ; Catalysis ; Catalytic activity ; Chemical synthesis ; Density functional theory ; Mathematical analysis ; Nanoparticles ; Polyethylene glycol ; Silver ; Size distribution ; Vacuum annealing</subject><ispartof>Catalysis science &amp; technology, 2018, Vol.8 (6), p.1652-1662</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-e9f747fc15b94b6ee3d91e5b86062a32892021eb630701bf8835be21ea3b27fe3</citedby><cites>FETCH-LOGICAL-c354t-e9f747fc15b94b6ee3d91e5b86062a32892021eb630701bf8835be21ea3b27fe3</cites><orcidid>0000-0002-2597-6611 ; 0000-0001-5248-1799 ; 0000-0003-3447-2092 ; 0000-0002-0928-6477 ; 0000-0003-4517-1682 ; 0000-0003-2298-6539 ; 0000-0003-4882-401X ; 0000-0001-7304-2461 ; 0000-0002-3822-8102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Konopatsky, Anton S</creatorcontrib><creatorcontrib>Firestein, Konstantin L</creatorcontrib><creatorcontrib>Leybo, Denis V</creatorcontrib><creatorcontrib>Popov, Zakhar I</creatorcontrib><creatorcontrib>Larionov, Konstantin V</creatorcontrib><creatorcontrib>Steinman, Alexander E</creatorcontrib><creatorcontrib>Kovalskii, Andrey M</creatorcontrib><creatorcontrib>Matveev, Andrei T</creatorcontrib><creatorcontrib>Manakhov, Anton M</creatorcontrib><creatorcontrib>Sorokin, Pavel B</creatorcontrib><creatorcontrib>Golberg, Dmitri</creatorcontrib><creatorcontrib>Shtansky, Dmitry V</creatorcontrib><title>BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments</title><title>Catalysis science &amp; technology</title><description>Hexagonal boron nitride nanoparticles (BNNPs) with different amounts of boron oxide on their surfaces were used as catalyst carriers. BNNPs/Ag nanohybrids were produced via ultraviolet (UV) decomposition of AgNO 3 in a mixture of polyethylene glycol and BNNPs. High temperature (1600 °C, 1.5 h) vacuum annealing of BNNPs promoted small size (5-10 nm) Ag nanoparticle (AgNPs) formation on BN surfaces with narrow size distribution, whereas using BNNPs in their as-produced state resulted in large AgNPs with various sizes. An increase in the B 2 O 3 content on the BNNPs surfaces (up to a certain point) during BNNP pre-annealing in air led to larger amounts of AgNPs on their surfaces. Experimental results were confirmed by theoretical calculations of the adhesion energy of the (111) Ag with (0001) h -BN and (100) B 2 O 3 surfaces. In contrast to the nonwettability of the h -BN surface by AgNPs, silver bound well to B 2 O 3 with the formation of a covalent bond at the interface. Excessive fraction of B 2 O 3 , however, was not beneficial in terms of obtaining the optimal contents of AgNPs. Results of catalytic activity tests demonstrated that BNNPs/Ag nanohybrids synthesized using BNNPs with an optimized amount of B 2 O 3 possess significantly enhanced catalytic activity compared to BNNPs without or with excess amounts of oxide. Finally, the catalytic activity of nanohybrids was theoretically analyzed using density functional theory (DFT) calculations. BNNPs/Ag nanohybrids with an optimal amount of B 2 O 3 demonstrated a higher catalytic activity.</description><subject>Adhesive bonding</subject><subject>Boron nitride</subject><subject>Boron oxides</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chemical synthesis</subject><subject>Density functional theory</subject><subject>Mathematical analysis</subject><subject>Nanoparticles</subject><subject>Polyethylene glycol</subject><subject>Silver</subject><subject>Size distribution</subject><subject>Vacuum annealing</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AQhhdRsNRevAsL3oTY_Uo28VaDVqHoQT14CrubSZNSN3F3q-bfG43Uuczw8jAzPAidUnJJCc_mRpqeMEbk-gBNGBEiEjKhh_s55sdo5v2GDCUySlI2QU_XD9gq23bKhcZsYb5Y47rXrik9_mxCjcHWyhoosVFBbfsBwsqE5qMJ_RUONbSux8qWGL46cM0b2OBP0FGlth5mf32KXm5vnvO7aPW4vM8Xq8jwWIQIskoKWRka60zoBICXGYVYpwlJmOIszRhhFHTCiSRUV2nKYw1DorhmsgI-Refj3s617zvwodi0O2eHkwUjNOZUsJQN1MVIGdd676AquuFP5fqCkuLHW5HL_PXX23KAz0bYebPn_r3ybymvaZM</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Konopatsky, Anton S</creator><creator>Firestein, Konstantin L</creator><creator>Leybo, Denis V</creator><creator>Popov, Zakhar I</creator><creator>Larionov, Konstantin V</creator><creator>Steinman, Alexander E</creator><creator>Kovalskii, Andrey M</creator><creator>Matveev, Andrei T</creator><creator>Manakhov, Anton M</creator><creator>Sorokin, Pavel B</creator><creator>Golberg, Dmitri</creator><creator>Shtansky, Dmitry V</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2597-6611</orcidid><orcidid>https://orcid.org/0000-0001-5248-1799</orcidid><orcidid>https://orcid.org/0000-0003-3447-2092</orcidid><orcidid>https://orcid.org/0000-0002-0928-6477</orcidid><orcidid>https://orcid.org/0000-0003-4517-1682</orcidid><orcidid>https://orcid.org/0000-0003-2298-6539</orcidid><orcidid>https://orcid.org/0000-0003-4882-401X</orcidid><orcidid>https://orcid.org/0000-0001-7304-2461</orcidid><orcidid>https://orcid.org/0000-0002-3822-8102</orcidid></search><sort><creationdate>2018</creationdate><title>BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments</title><author>Konopatsky, Anton S ; Firestein, Konstantin L ; Leybo, Denis V ; Popov, Zakhar I ; Larionov, Konstantin V ; Steinman, Alexander E ; Kovalskii, Andrey M ; Matveev, Andrei T ; Manakhov, Anton M ; Sorokin, Pavel B ; Golberg, Dmitri ; Shtansky, Dmitry V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-e9f747fc15b94b6ee3d91e5b86062a32892021eb630701bf8835be21ea3b27fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adhesive bonding</topic><topic>Boron nitride</topic><topic>Boron oxides</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chemical synthesis</topic><topic>Density functional theory</topic><topic>Mathematical analysis</topic><topic>Nanoparticles</topic><topic>Polyethylene glycol</topic><topic>Silver</topic><topic>Size distribution</topic><topic>Vacuum annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konopatsky, Anton S</creatorcontrib><creatorcontrib>Firestein, Konstantin L</creatorcontrib><creatorcontrib>Leybo, Denis V</creatorcontrib><creatorcontrib>Popov, Zakhar I</creatorcontrib><creatorcontrib>Larionov, Konstantin V</creatorcontrib><creatorcontrib>Steinman, Alexander E</creatorcontrib><creatorcontrib>Kovalskii, Andrey M</creatorcontrib><creatorcontrib>Matveev, Andrei T</creatorcontrib><creatorcontrib>Manakhov, Anton M</creatorcontrib><creatorcontrib>Sorokin, Pavel B</creatorcontrib><creatorcontrib>Golberg, Dmitri</creatorcontrib><creatorcontrib>Shtansky, Dmitry V</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konopatsky, Anton S</au><au>Firestein, Konstantin L</au><au>Leybo, Denis V</au><au>Popov, Zakhar I</au><au>Larionov, Konstantin V</au><au>Steinman, Alexander E</au><au>Kovalskii, Andrey M</au><au>Matveev, Andrei T</au><au>Manakhov, Anton M</au><au>Sorokin, Pavel B</au><au>Golberg, Dmitri</au><au>Shtansky, Dmitry V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments</atitle><jtitle>Catalysis science &amp; technology</jtitle><date>2018</date><risdate>2018</risdate><volume>8</volume><issue>6</issue><spage>1652</spage><epage>1662</epage><pages>1652-1662</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>Hexagonal boron nitride nanoparticles (BNNPs) with different amounts of boron oxide on their surfaces were used as catalyst carriers. BNNPs/Ag nanohybrids were produced via ultraviolet (UV) decomposition of AgNO 3 in a mixture of polyethylene glycol and BNNPs. High temperature (1600 °C, 1.5 h) vacuum annealing of BNNPs promoted small size (5-10 nm) Ag nanoparticle (AgNPs) formation on BN surfaces with narrow size distribution, whereas using BNNPs in their as-produced state resulted in large AgNPs with various sizes. An increase in the B 2 O 3 content on the BNNPs surfaces (up to a certain point) during BNNP pre-annealing in air led to larger amounts of AgNPs on their surfaces. Experimental results were confirmed by theoretical calculations of the adhesion energy of the (111) Ag with (0001) h -BN and (100) B 2 O 3 surfaces. In contrast to the nonwettability of the h -BN surface by AgNPs, silver bound well to B 2 O 3 with the formation of a covalent bond at the interface. Excessive fraction of B 2 O 3 , however, was not beneficial in terms of obtaining the optimal contents of AgNPs. Results of catalytic activity tests demonstrated that BNNPs/Ag nanohybrids synthesized using BNNPs with an optimized amount of B 2 O 3 possess significantly enhanced catalytic activity compared to BNNPs without or with excess amounts of oxide. Finally, the catalytic activity of nanohybrids was theoretically analyzed using density functional theory (DFT) calculations. BNNPs/Ag nanohybrids with an optimal amount of B 2 O 3 demonstrated a higher catalytic activity.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7cy02207g</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2597-6611</orcidid><orcidid>https://orcid.org/0000-0001-5248-1799</orcidid><orcidid>https://orcid.org/0000-0003-3447-2092</orcidid><orcidid>https://orcid.org/0000-0002-0928-6477</orcidid><orcidid>https://orcid.org/0000-0003-4517-1682</orcidid><orcidid>https://orcid.org/0000-0003-2298-6539</orcidid><orcidid>https://orcid.org/0000-0003-4882-401X</orcidid><orcidid>https://orcid.org/0000-0001-7304-2461</orcidid><orcidid>https://orcid.org/0000-0002-3822-8102</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2018, Vol.8 (6), p.1652-1662
issn 2044-4753
2044-4761
language eng
recordid cdi_rsc_primary_c7cy02207g
source Royal Society Of Chemistry Journals 2008-
subjects Adhesive bonding
Boron nitride
Boron oxides
Catalysis
Catalytic activity
Chemical synthesis
Density functional theory
Mathematical analysis
Nanoparticles
Polyethylene glycol
Silver
Size distribution
Vacuum annealing
title BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BN%20nanoparticle/Ag%20hybrids%20with%20enhanced%20catalytic%20activity:%20theory%20and%20experiments&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Konopatsky,%20Anton%20S&rft.date=2018&rft.volume=8&rft.issue=6&rft.spage=1652&rft.epage=1662&rft.pages=1652-1662&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/c7cy02207g&rft_dat=%3Cproquest_rsc_p%3E2015314282%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015314282&rft_id=info:pmid/&rfr_iscdi=true