Multi-functionalized herringbone carbon nanofiber for anodes of lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7cp03246c
Herringbone carbon nanofibers (HCNFs) are prepared for use as anode materials in lithium-ion batteries (LIBs). HCNFs are prepared using a Ni-Fe catalyst and subsequently multi-functionalized with oxygen using the Hummers' method, and then with both oxygen and nitrogen-containing 2-ureido-4[1 H...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18618 |
---|---|
container_issue | 28 |
container_start_page | 18612 |
container_title | |
container_volume | 19 |
creator | Kim, Mok-Hwa Cho, Min-Young Kim, Kwang-Bum Jeong, Han Gi Han, Joong Tark Roh, Kwang Chul |
description | Herringbone carbon nanofibers (HCNFs) are prepared for use as anode materials in lithium-ion batteries (LIBs). HCNFs are prepared using a Ni-Fe catalyst and subsequently multi-functionalized with oxygen using the Hummers' method, and then with both oxygen and nitrogen-containing 2-ureido-4[1
H
]pyrimidinone (UHP) moieties, which endow the HCNFs with the ability to form quadruple hydrogen bonds (QHBs). The as-prepared HCNFs are, on average, 13 μm in length and 100 nm in diameter, with a highly graphitic structure. The oxidized HCNFs (Ox-HCNFs) obtained by Hummers' method are partially exfoliated, having double-bladed saw-like structures that extend in the direction of the graphite planes. QHBs are formed between the HCNFs after functionalization with the UHP moieties. The final surface-modified HCNFs (N-Ox-HCNFs) have more electrochemical sites, shorter Li
+
diffusion lengths, and additional electron pathways compared with the as-prepared HCNF and Ox-HCNF. The introduction of oxygen- and nitrogen-containing functional groups improves the performance of LIBs: a high charge capacity of 763 mA h g
−1
at 0.1 A g
−1
, excellent rate capability (a capacity of 402 mA h g
−1
at 3 A g
−1
), and near 100% capacity retention after 300 cycles are reported.
Herringbone carbon nanofibers (HCNFs) are prepared for use as anode materials in lithium-ion batteries (LIBs). |
doi_str_mv | 10.1039/c7cp03246c |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c7cp03246c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c7cp03246c</sourcerecordid><originalsourceid>FETCH-rsc_primary_c7cp03246c3</originalsourceid><addsrcrecordid>eNqFjzFPwzAQhS0EEqWwsCMdGwwpNg4pZaVB7YAYyh45zpkecmzLdpDgB_E7CRKCAQmm707vvTs9xo4FnwkuFxd6rgOXl2Wld9hElJUsFvy63P2e59U-O0jpmXMuroScsPf7wWYqzOB0Ju-UpTfsYIsxkntqvUPQKo4Ep5w31GIE4yOMS4cJvAFLeUtDD2MYWpUzRsJUW9Q5ekca0hCCxR5dVvEVyI3pXn2-grN6sz4H9aLIqtbiDDaIsHxY38DvNodszyib8OiLU3ZyVz_eroqYdBMi9ePx5scu_9dP_9Kb0Bn5ATjUags</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-functionalized herringbone carbon nanofiber for anodes of lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7cp03246c</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kim, Mok-Hwa ; Cho, Min-Young ; Kim, Kwang-Bum ; Jeong, Han Gi ; Han, Joong Tark ; Roh, Kwang Chul</creator><creatorcontrib>Kim, Mok-Hwa ; Cho, Min-Young ; Kim, Kwang-Bum ; Jeong, Han Gi ; Han, Joong Tark ; Roh, Kwang Chul</creatorcontrib><description>Herringbone carbon nanofibers (HCNFs) are prepared for use as anode materials in lithium-ion batteries (LIBs). HCNFs are prepared using a Ni-Fe catalyst and subsequently multi-functionalized with oxygen using the Hummers' method, and then with both oxygen and nitrogen-containing 2-ureido-4[1
H
]pyrimidinone (UHP) moieties, which endow the HCNFs with the ability to form quadruple hydrogen bonds (QHBs). The as-prepared HCNFs are, on average, 13 μm in length and 100 nm in diameter, with a highly graphitic structure. The oxidized HCNFs (Ox-HCNFs) obtained by Hummers' method are partially exfoliated, having double-bladed saw-like structures that extend in the direction of the graphite planes. QHBs are formed between the HCNFs after functionalization with the UHP moieties. The final surface-modified HCNFs (N-Ox-HCNFs) have more electrochemical sites, shorter Li
+
diffusion lengths, and additional electron pathways compared with the as-prepared HCNF and Ox-HCNF. The introduction of oxygen- and nitrogen-containing functional groups improves the performance of LIBs: a high charge capacity of 763 mA h g
−1
at 0.1 A g
−1
, excellent rate capability (a capacity of 402 mA h g
−1
at 3 A g
−1
), and near 100% capacity retention after 300 cycles are reported.
Herringbone carbon nanofibers (HCNFs) are prepared for use as anode materials in lithium-ion batteries (LIBs).</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c7cp03246c</identifier><language>eng</language><creationdate>2017-07</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim, Mok-Hwa</creatorcontrib><creatorcontrib>Cho, Min-Young</creatorcontrib><creatorcontrib>Kim, Kwang-Bum</creatorcontrib><creatorcontrib>Jeong, Han Gi</creatorcontrib><creatorcontrib>Han, Joong Tark</creatorcontrib><creatorcontrib>Roh, Kwang Chul</creatorcontrib><title>Multi-functionalized herringbone carbon nanofiber for anodes of lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7cp03246c</title><description>Herringbone carbon nanofibers (HCNFs) are prepared for use as anode materials in lithium-ion batteries (LIBs). HCNFs are prepared using a Ni-Fe catalyst and subsequently multi-functionalized with oxygen using the Hummers' method, and then with both oxygen and nitrogen-containing 2-ureido-4[1
H
]pyrimidinone (UHP) moieties, which endow the HCNFs with the ability to form quadruple hydrogen bonds (QHBs). The as-prepared HCNFs are, on average, 13 μm in length and 100 nm in diameter, with a highly graphitic structure. The oxidized HCNFs (Ox-HCNFs) obtained by Hummers' method are partially exfoliated, having double-bladed saw-like structures that extend in the direction of the graphite planes. QHBs are formed between the HCNFs after functionalization with the UHP moieties. The final surface-modified HCNFs (N-Ox-HCNFs) have more electrochemical sites, shorter Li
+
diffusion lengths, and additional electron pathways compared with the as-prepared HCNF and Ox-HCNF. The introduction of oxygen- and nitrogen-containing functional groups improves the performance of LIBs: a high charge capacity of 763 mA h g
−1
at 0.1 A g
−1
, excellent rate capability (a capacity of 402 mA h g
−1
at 3 A g
−1
), and near 100% capacity retention after 300 cycles are reported.
Herringbone carbon nanofibers (HCNFs) are prepared for use as anode materials in lithium-ion batteries (LIBs).</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjzFPwzAQhS0EEqWwsCMdGwwpNg4pZaVB7YAYyh45zpkecmzLdpDgB_E7CRKCAQmm707vvTs9xo4FnwkuFxd6rgOXl2Wld9hElJUsFvy63P2e59U-O0jpmXMuroScsPf7wWYqzOB0Ju-UpTfsYIsxkntqvUPQKo4Ep5w31GIE4yOMS4cJvAFLeUtDD2MYWpUzRsJUW9Q5ekca0hCCxR5dVvEVyI3pXn2-grN6sz4H9aLIqtbiDDaIsHxY38DvNodszyib8OiLU3ZyVz_eroqYdBMi9ePx5scu_9dP_9Kb0Bn5ATjUags</recordid><startdate>20170719</startdate><enddate>20170719</enddate><creator>Kim, Mok-Hwa</creator><creator>Cho, Min-Young</creator><creator>Kim, Kwang-Bum</creator><creator>Jeong, Han Gi</creator><creator>Han, Joong Tark</creator><creator>Roh, Kwang Chul</creator><scope/></search><sort><creationdate>20170719</creationdate><title>Multi-functionalized herringbone carbon nanofiber for anodes of lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7cp03246c</title><author>Kim, Mok-Hwa ; Cho, Min-Young ; Kim, Kwang-Bum ; Jeong, Han Gi ; Han, Joong Tark ; Roh, Kwang Chul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c7cp03246c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Mok-Hwa</creatorcontrib><creatorcontrib>Cho, Min-Young</creatorcontrib><creatorcontrib>Kim, Kwang-Bum</creatorcontrib><creatorcontrib>Jeong, Han Gi</creatorcontrib><creatorcontrib>Han, Joong Tark</creatorcontrib><creatorcontrib>Roh, Kwang Chul</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Mok-Hwa</au><au>Cho, Min-Young</au><au>Kim, Kwang-Bum</au><au>Jeong, Han Gi</au><au>Han, Joong Tark</au><au>Roh, Kwang Chul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-functionalized herringbone carbon nanofiber for anodes of lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7cp03246c</atitle><date>2017-07-19</date><risdate>2017</risdate><volume>19</volume><issue>28</issue><spage>18612</spage><epage>18618</epage><pages>18612-18618</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Herringbone carbon nanofibers (HCNFs) are prepared for use as anode materials in lithium-ion batteries (LIBs). HCNFs are prepared using a Ni-Fe catalyst and subsequently multi-functionalized with oxygen using the Hummers' method, and then with both oxygen and nitrogen-containing 2-ureido-4[1
H
]pyrimidinone (UHP) moieties, which endow the HCNFs with the ability to form quadruple hydrogen bonds (QHBs). The as-prepared HCNFs are, on average, 13 μm in length and 100 nm in diameter, with a highly graphitic structure. The oxidized HCNFs (Ox-HCNFs) obtained by Hummers' method are partially exfoliated, having double-bladed saw-like structures that extend in the direction of the graphite planes. QHBs are formed between the HCNFs after functionalization with the UHP moieties. The final surface-modified HCNFs (N-Ox-HCNFs) have more electrochemical sites, shorter Li
+
diffusion lengths, and additional electron pathways compared with the as-prepared HCNF and Ox-HCNF. The introduction of oxygen- and nitrogen-containing functional groups improves the performance of LIBs: a high charge capacity of 763 mA h g
−1
at 0.1 A g
−1
, excellent rate capability (a capacity of 402 mA h g
−1
at 3 A g
−1
), and near 100% capacity retention after 300 cycles are reported.
Herringbone carbon nanofibers (HCNFs) are prepared for use as anode materials in lithium-ion batteries (LIBs).</abstract><doi>10.1039/c7cp03246c</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_rsc_primary_c7cp03246c |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | Multi-functionalized herringbone carbon nanofiber for anodes of lithium ion batteriesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7cp03246c |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-functionalized%20herringbone%20carbon%20nanofiber%20for%20anodes%20of%20lithium%20ion%20batteriesElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c7cp03246c&rft.au=Kim,%20Mok-Hwa&rft.date=2017-07-19&rft.volume=19&rft.issue=28&rft.spage=18612&rft.epage=18618&rft.pages=18612-18618&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c7cp03246c&rft_dat=%3Crsc%3Ec7cp03246c%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |