Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineeringElectronic supplementary information (ESI) available. See DOI: 10.1039/c7cc01988b

A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Smith, Alec S. T, Yoo, Hyok, Yi, Hyunjung, Ahn, Eun Hyun, Lee, Justin H, Shao, Guozheng, Nagornyak, Ekaterina, Laflamme, Michael A, Murry, Charles E, Kim, Deok-Ho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7415
container_issue 53
container_start_page 7412
container_title
container_volume 53
creator Smith, Alec S. T
Yoo, Hyok
Yi, Hyunjung
Ahn, Eun Hyun
Lee, Justin H
Shao, Guozheng
Nagornyak, Ekaterina
Laflamme, Michael A
Murry, Charles E
Kim, Deok-Ho
description A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with anisotropic electrical conductivity for engineering the structural and functional phenotypes of macroscopic cardiac tissue constructs. Guided by anisotropic electroconductive and topographic cues, the tissue constructs displayed structural property enhancement in myofibrils and sarcomeres, and exhibited significant increases in the expression of cell-cell coupling and calcium handling proteins, as well as in action potential duration and peak calcium release. Topographic and graphene-functionalized culture substrates were fabricated to regulate cardiac structure and function through manipulation of micro- and nano-scale mechanical and electroconductive cues.
doi_str_mv 10.1039/c7cc01988b
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c7cc01988b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c7cc01988b</sourcerecordid><originalsourceid>FETCH-rsc_primary_c7cc01988b3</originalsourceid><addsrcrecordid>eNqFTz1LxEAUXETB86OxF56dFjkTkniJrUa9QhTOwi687L7kVpK3y-7m4P7W_UIjCBaCTjMD8wEjxFkSz5M4La_lQso4KYui2ROzJL3Jojwr3ve_dF5GizTLD8WR9x_xhCQvZmL3rKUzESArYGQTWQyBHJMCaViNMugNQefQrokpeq0eYb1tnFbgJbat6ZWH1jiQ6JRGCUF7PxIQd5qJnOau6kkGZ1hL8KO1PQ3EAd0WNE_FAYM2DJfVankFuEHdY9PTHFZEcP-yvIXfz07EQYu9p9NvPhbnD9Xb3VPkvKyt08M0Xv_E0__9i7_82qo2_QQZWm3R</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineeringElectronic supplementary information (ESI) available. See DOI: 10.1039/c7cc01988b</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Smith, Alec S. T ; Yoo, Hyok ; Yi, Hyunjung ; Ahn, Eun Hyun ; Lee, Justin H ; Shao, Guozheng ; Nagornyak, Ekaterina ; Laflamme, Michael A ; Murry, Charles E ; Kim, Deok-Ho</creator><creatorcontrib>Smith, Alec S. T ; Yoo, Hyok ; Yi, Hyunjung ; Ahn, Eun Hyun ; Lee, Justin H ; Shao, Guozheng ; Nagornyak, Ekaterina ; Laflamme, Michael A ; Murry, Charles E ; Kim, Deok-Ho</creatorcontrib><description>A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with anisotropic electrical conductivity for engineering the structural and functional phenotypes of macroscopic cardiac tissue constructs. Guided by anisotropic electroconductive and topographic cues, the tissue constructs displayed structural property enhancement in myofibrils and sarcomeres, and exhibited significant increases in the expression of cell-cell coupling and calcium handling proteins, as well as in action potential duration and peak calcium release. Topographic and graphene-functionalized culture substrates were fabricated to regulate cardiac structure and function through manipulation of micro- and nano-scale mechanical and electroconductive cues.</description><identifier>ISSN: 1359-7345</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/c7cc01988b</identifier><language>eng</language><creationdate>2017-06</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>Smith, Alec S. T</creatorcontrib><creatorcontrib>Yoo, Hyok</creatorcontrib><creatorcontrib>Yi, Hyunjung</creatorcontrib><creatorcontrib>Ahn, Eun Hyun</creatorcontrib><creatorcontrib>Lee, Justin H</creatorcontrib><creatorcontrib>Shao, Guozheng</creatorcontrib><creatorcontrib>Nagornyak, Ekaterina</creatorcontrib><creatorcontrib>Laflamme, Michael A</creatorcontrib><creatorcontrib>Murry, Charles E</creatorcontrib><creatorcontrib>Kim, Deok-Ho</creatorcontrib><title>Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineeringElectronic supplementary information (ESI) available. See DOI: 10.1039/c7cc01988b</title><description>A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with anisotropic electrical conductivity for engineering the structural and functional phenotypes of macroscopic cardiac tissue constructs. Guided by anisotropic electroconductive and topographic cues, the tissue constructs displayed structural property enhancement in myofibrils and sarcomeres, and exhibited significant increases in the expression of cell-cell coupling and calcium handling proteins, as well as in action potential duration and peak calcium release. Topographic and graphene-functionalized culture substrates were fabricated to regulate cardiac structure and function through manipulation of micro- and nano-scale mechanical and electroconductive cues.</description><issn>1359-7345</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFTz1LxEAUXETB86OxF56dFjkTkniJrUa9QhTOwi687L7kVpK3y-7m4P7W_UIjCBaCTjMD8wEjxFkSz5M4La_lQso4KYui2ROzJL3Jojwr3ve_dF5GizTLD8WR9x_xhCQvZmL3rKUzESArYGQTWQyBHJMCaViNMugNQefQrokpeq0eYb1tnFbgJbat6ZWH1jiQ6JRGCUF7PxIQd5qJnOau6kkGZ1hL8KO1PQ3EAd0WNE_FAYM2DJfVankFuEHdY9PTHFZEcP-yvIXfz07EQYu9p9NvPhbnD9Xb3VPkvKyt08M0Xv_E0__9i7_82qo2_QQZWm3R</recordid><startdate>20170629</startdate><enddate>20170629</enddate><creator>Smith, Alec S. T</creator><creator>Yoo, Hyok</creator><creator>Yi, Hyunjung</creator><creator>Ahn, Eun Hyun</creator><creator>Lee, Justin H</creator><creator>Shao, Guozheng</creator><creator>Nagornyak, Ekaterina</creator><creator>Laflamme, Michael A</creator><creator>Murry, Charles E</creator><creator>Kim, Deok-Ho</creator><scope/></search><sort><creationdate>20170629</creationdate><title>Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineeringElectronic supplementary information (ESI) available. See DOI: 10.1039/c7cc01988b</title><author>Smith, Alec S. T ; Yoo, Hyok ; Yi, Hyunjung ; Ahn, Eun Hyun ; Lee, Justin H ; Shao, Guozheng ; Nagornyak, Ekaterina ; Laflamme, Michael A ; Murry, Charles E ; Kim, Deok-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c7cc01988b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Alec S. T</creatorcontrib><creatorcontrib>Yoo, Hyok</creatorcontrib><creatorcontrib>Yi, Hyunjung</creatorcontrib><creatorcontrib>Ahn, Eun Hyun</creatorcontrib><creatorcontrib>Lee, Justin H</creatorcontrib><creatorcontrib>Shao, Guozheng</creatorcontrib><creatorcontrib>Nagornyak, Ekaterina</creatorcontrib><creatorcontrib>Laflamme, Michael A</creatorcontrib><creatorcontrib>Murry, Charles E</creatorcontrib><creatorcontrib>Kim, Deok-Ho</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Alec S. T</au><au>Yoo, Hyok</au><au>Yi, Hyunjung</au><au>Ahn, Eun Hyun</au><au>Lee, Justin H</au><au>Shao, Guozheng</au><au>Nagornyak, Ekaterina</au><au>Laflamme, Michael A</au><au>Murry, Charles E</au><au>Kim, Deok-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineeringElectronic supplementary information (ESI) available. See DOI: 10.1039/c7cc01988b</atitle><date>2017-06-29</date><risdate>2017</risdate><volume>53</volume><issue>53</issue><spage>7412</spage><epage>7415</epage><pages>7412-7415</pages><issn>1359-7345</issn><eissn>1364-548X</eissn><abstract>A lack of electrical conductivity and structural organization in currently available biomaterial scaffolds limits their utility for generating physiologically representative models of functional cardiac tissue. Here we report on the development of scalable, graphene-functionalized topographies with anisotropic electrical conductivity for engineering the structural and functional phenotypes of macroscopic cardiac tissue constructs. Guided by anisotropic electroconductive and topographic cues, the tissue constructs displayed structural property enhancement in myofibrils and sarcomeres, and exhibited significant increases in the expression of cell-cell coupling and calcium handling proteins, as well as in action potential duration and peak calcium release. Topographic and graphene-functionalized culture substrates were fabricated to regulate cardiac structure and function through manipulation of micro- and nano-scale mechanical and electroconductive cues.</abstract><doi>10.1039/c7cc01988b</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-7345
ispartof
issn 1359-7345
1364-548X
language eng
recordid cdi_rsc_primary_c7cc01988b
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
title Micro- and nano-patterned conductive graphene-PEG hybrid scaffolds for cardiac tissue engineeringElectronic supplementary information (ESI) available. See DOI: 10.1039/c7cc01988b
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro-%20and%20nano-patterned%20conductive%20graphene-PEG%20hybrid%20scaffolds%20for%20cardiac%20tissue%20engineeringElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c7cc01988b&rft.au=Smith,%20Alec%20S.%20T&rft.date=2017-06-29&rft.volume=53&rft.issue=53&rft.spage=7412&rft.epage=7415&rft.pages=7412-7415&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/c7cc01988b&rft_dat=%3Crsc%3Ec7cc01988b%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true