Electrogenerated chemiluminescence of Ru(bpy) at a black phosphorus quantum dot modified electrode and its sensing application

Black phosphorus quantum dots (BPQDs) with an average size of 8.2 nm were synthesized through a liquid exfoliation method. The surface morphology and the thickness of the BPQDs were identified by high-resolution transmission microscopy (HRTEM), atomic force microscopy (AFM), and Raman spectroscopy....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) 2018-01, Vol.143 (1), p.34-31
Hauptverfasser: Zhang, Lei, Tian, KaiJin, Dong, YongPing, Ding, HouCheng, Wang, ChengMing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Black phosphorus quantum dots (BPQDs) with an average size of 8.2 nm were synthesized through a liquid exfoliation method. The surface morphology and the thickness of the BPQDs were identified by high-resolution transmission microscopy (HRTEM), atomic force microscopy (AFM), and Raman spectroscopy. The electrogenerated chemiluminescence (ECL) behavior of Ru(bpy) 3 2+ was investigated at a BPQD modified glassy carbon electrode under neutral conditions. A strong anodic ECL signal was obtained at the modified electrode in the absence of a coreactant, which is nearly three orders of magnitude larger than that at the bare electrode. Electrochemical results revealed that the oxidation process of Ru(bpy) 3 2+ can be significantly catalyzed by BPQDs, suggesting that BPQDs can act as the coreactant of Ru(bpy) 3 2+ to generate strong light emission. Dopamine could react with the oxidation product of Ru(bpy) 3 2+ and exhibited an apparent inhibiting effect on ECL emission. As a result, it can be sensitively detected in the range of 0.1 nM to 50 nM with a detection limit of 0.022 nM. The present work revealed that BPQDs are a potential ECL platform, and which are promising in the fabrication of a novel ECL biosensor. Strong anodic electrogenerated chemiluminescence (ECL) of Ru(bpy) 3 2+ can be obtained under neutral conditions at a black phosphorus quantum dot (BPQD) modified electrode due to the catalytic effect of BPQDs. Dopamine exhibits an apparent inhibiting effect on the ECL signal, and as a result, can be sensitively detected.
ISSN:0003-2654
1364-5528
DOI:10.1039/c7an01617d