Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots

Hollow plasmonic nanostructures with built-in and accessible electromagnetic hotspots such as nanorattles, obtained through a galvanic replacement reaction, have received wide attention in chemical and biological sensing and targeted drug delivery. In this study, we investigate the surface enhanced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) 2017-11, Vol.142 (23), p.4536-4543
Hauptverfasser: Liu, Keng-Ku, Tadepalli, Sirimuvva, Wang, Zheyu, Jiang, Qisheng, Singamaneni, Srikanth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4543
container_issue 23
container_start_page 4536
container_title Analyst (London)
container_volume 142
creator Liu, Keng-Ku
Tadepalli, Sirimuvva
Wang, Zheyu
Jiang, Qisheng
Singamaneni, Srikanth
description Hollow plasmonic nanostructures with built-in and accessible electromagnetic hotspots such as nanorattles, obtained through a galvanic replacement reaction, have received wide attention in chemical and biological sensing and targeted drug delivery. In this study, we investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes. We found that the SERS efficacy of the nanorattles is governed by the plasmon extinction intensity, localized surface plasmon resonance (LSPR) wavelength of the nanostructures with respect to the excitation source and intensity of the electromagnetic field at the hotspot, with the latter playing a determining role. Finite-difference time-domain (FDTD) simulations showed excellent agreement with the experimental findings that an optimal degree of galvanic replacement is critical for maximum SERS enhancement. The rational design and synthesis of the plasmonic nanorattles based on these findings can make these nanostructures highly attractive for SERS-based chemical and biological sensing and bioimaging. We investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes.
doi_str_mv 10.1039/c7an01595j
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c7an01595j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010824781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f1f23d14e0b81c7618ad6a28c53965436f870e19e2abbb72571caec0be1647ff3</originalsourceid><addsrcrecordid>eNpFkc1LxDAQxYMo7rp68a4UvAnVTNI07XFZ_EQUXD2XNJ26XbppTVJl_3ujq-thGIb58Yb3hpBjoBdAeX6ppTIURC6WO2QMPE1iIVi2S8aUUh6zVCQjcuDcMoxABd0nI5YDgBBiTNTc20H7wWJcYY-mQuOj-dXzPFLaNx-NX0ddHfWtcqvONDoyynRWed-iiz4bv4jKoWl93JgIW9Tediv1ZtAHctF514c6JHu1ah0e_fYJeb2-epndxg9PN3ez6UOsOZc-rqFmvIIEaZmBlilkqkoVy7TgeXDA0zqTFCFHpsqylExI0Ao1LRHSRNY1n5CzjW5vu_cBnS-W3WBNOFmw4DtjicwgUOcbStvOOYt10dtmpey6AFp8p1nM5PTxJ837AJ_-Sg7lCqst-hdfAE42gHV6u_1_B_8CCOB62g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010824781</pqid></control><display><type>article</type><title>Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Liu, Keng-Ku ; Tadepalli, Sirimuvva ; Wang, Zheyu ; Jiang, Qisheng ; Singamaneni, Srikanth</creator><creatorcontrib>Liu, Keng-Ku ; Tadepalli, Sirimuvva ; Wang, Zheyu ; Jiang, Qisheng ; Singamaneni, Srikanth</creatorcontrib><description>Hollow plasmonic nanostructures with built-in and accessible electromagnetic hotspots such as nanorattles, obtained through a galvanic replacement reaction, have received wide attention in chemical and biological sensing and targeted drug delivery. In this study, we investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes. We found that the SERS efficacy of the nanorattles is governed by the plasmon extinction intensity, localized surface plasmon resonance (LSPR) wavelength of the nanostructures with respect to the excitation source and intensity of the electromagnetic field at the hotspot, with the latter playing a determining role. Finite-difference time-domain (FDTD) simulations showed excellent agreement with the experimental findings that an optimal degree of galvanic replacement is critical for maximum SERS enhancement. The rational design and synthesis of the plasmonic nanorattles based on these findings can make these nanostructures highly attractive for SERS-based chemical and biological sensing and bioimaging. We investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/c7an01595j</identifier><identifier>PMID: 29111555</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Drug delivery systems ; Electromagnetic fields ; Finite difference method ; Finite difference time domain method ; Gold ; Medical imaging ; Nanostructure ; Raman spectra ; Silver</subject><ispartof>Analyst (London), 2017-11, Vol.142 (23), p.4536-4543</ispartof><rights>Copyright Royal Society of Chemistry 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f1f23d14e0b81c7618ad6a28c53965436f870e19e2abbb72571caec0be1647ff3</citedby><cites>FETCH-LOGICAL-c337t-f1f23d14e0b81c7618ad6a28c53965436f870e19e2abbb72571caec0be1647ff3</cites><orcidid>0000-0002-7203-2613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2831,2832,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29111555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Keng-Ku</creatorcontrib><creatorcontrib>Tadepalli, Sirimuvva</creatorcontrib><creatorcontrib>Wang, Zheyu</creatorcontrib><creatorcontrib>Jiang, Qisheng</creatorcontrib><creatorcontrib>Singamaneni, Srikanth</creatorcontrib><title>Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>Hollow plasmonic nanostructures with built-in and accessible electromagnetic hotspots such as nanorattles, obtained through a galvanic replacement reaction, have received wide attention in chemical and biological sensing and targeted drug delivery. In this study, we investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes. We found that the SERS efficacy of the nanorattles is governed by the plasmon extinction intensity, localized surface plasmon resonance (LSPR) wavelength of the nanostructures with respect to the excitation source and intensity of the electromagnetic field at the hotspot, with the latter playing a determining role. Finite-difference time-domain (FDTD) simulations showed excellent agreement with the experimental findings that an optimal degree of galvanic replacement is critical for maximum SERS enhancement. The rational design and synthesis of the plasmonic nanorattles based on these findings can make these nanostructures highly attractive for SERS-based chemical and biological sensing and bioimaging. We investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes.</description><subject>Drug delivery systems</subject><subject>Electromagnetic fields</subject><subject>Finite difference method</subject><subject>Finite difference time domain method</subject><subject>Gold</subject><subject>Medical imaging</subject><subject>Nanostructure</subject><subject>Raman spectra</subject><subject>Silver</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFkc1LxDAQxYMo7rp68a4UvAnVTNI07XFZ_EQUXD2XNJ26XbppTVJl_3ujq-thGIb58Yb3hpBjoBdAeX6ppTIURC6WO2QMPE1iIVi2S8aUUh6zVCQjcuDcMoxABd0nI5YDgBBiTNTc20H7wWJcYY-mQuOj-dXzPFLaNx-NX0ddHfWtcqvONDoyynRWed-iiz4bv4jKoWl93JgIW9Tediv1ZtAHctF514c6JHu1ah0e_fYJeb2-epndxg9PN3ez6UOsOZc-rqFmvIIEaZmBlilkqkoVy7TgeXDA0zqTFCFHpsqylExI0Ao1LRHSRNY1n5CzjW5vu_cBnS-W3WBNOFmw4DtjicwgUOcbStvOOYt10dtmpey6AFp8p1nM5PTxJ837AJ_-Sg7lCqst-hdfAE42gHV6u_1_B_8CCOB62g</recordid><startdate>20171120</startdate><enddate>20171120</enddate><creator>Liu, Keng-Ku</creator><creator>Tadepalli, Sirimuvva</creator><creator>Wang, Zheyu</creator><creator>Jiang, Qisheng</creator><creator>Singamaneni, Srikanth</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7203-2613</orcidid></search><sort><creationdate>20171120</creationdate><title>Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots</title><author>Liu, Keng-Ku ; Tadepalli, Sirimuvva ; Wang, Zheyu ; Jiang, Qisheng ; Singamaneni, Srikanth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f1f23d14e0b81c7618ad6a28c53965436f870e19e2abbb72571caec0be1647ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Drug delivery systems</topic><topic>Electromagnetic fields</topic><topic>Finite difference method</topic><topic>Finite difference time domain method</topic><topic>Gold</topic><topic>Medical imaging</topic><topic>Nanostructure</topic><topic>Raman spectra</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Keng-Ku</creatorcontrib><creatorcontrib>Tadepalli, Sirimuvva</creatorcontrib><creatorcontrib>Wang, Zheyu</creatorcontrib><creatorcontrib>Jiang, Qisheng</creatorcontrib><creatorcontrib>Singamaneni, Srikanth</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Keng-Ku</au><au>Tadepalli, Sirimuvva</au><au>Wang, Zheyu</au><au>Jiang, Qisheng</au><au>Singamaneni, Srikanth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2017-11-20</date><risdate>2017</risdate><volume>142</volume><issue>23</issue><spage>4536</spage><epage>4543</epage><pages>4536-4543</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>Hollow plasmonic nanostructures with built-in and accessible electromagnetic hotspots such as nanorattles, obtained through a galvanic replacement reaction, have received wide attention in chemical and biological sensing and targeted drug delivery. In this study, we investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes. We found that the SERS efficacy of the nanorattles is governed by the plasmon extinction intensity, localized surface plasmon resonance (LSPR) wavelength of the nanostructures with respect to the excitation source and intensity of the electromagnetic field at the hotspot, with the latter playing a determining role. Finite-difference time-domain (FDTD) simulations showed excellent agreement with the experimental findings that an optimal degree of galvanic replacement is critical for maximum SERS enhancement. The rational design and synthesis of the plasmonic nanorattles based on these findings can make these nanostructures highly attractive for SERS-based chemical and biological sensing and bioimaging. We investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29111555</pmid><doi>10.1039/c7an01595j</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7203-2613</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2654
ispartof Analyst (London), 2017-11, Vol.142 (23), p.4536-4543
issn 0003-2654
1364-5528
language eng
recordid cdi_rsc_primary_c7an01595j
source Royal Society of Chemistry Journals Archive (1841-2007); Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Drug delivery systems
Electromagnetic fields
Finite difference method
Finite difference time domain method
Gold
Medical imaging
Nanostructure
Raman spectra
Silver
title Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-dependent%20SERS%20activity%20of%20plasmonic%20nanorattles%20with%20built-in%20electromagnetic%20hotspots&rft.jtitle=Analyst%20(London)&rft.au=Liu,%20Keng-Ku&rft.date=2017-11-20&rft.volume=142&rft.issue=23&rft.spage=4536&rft.epage=4543&rft.pages=4536-4543&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/c7an01595j&rft_dat=%3Cproquest_rsc_p%3E2010824781%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010824781&rft_id=info:pmid/29111555&rfr_iscdi=true