Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots
Hollow plasmonic nanostructures with built-in and accessible electromagnetic hotspots such as nanorattles, obtained through a galvanic replacement reaction, have received wide attention in chemical and biological sensing and targeted drug delivery. In this study, we investigate the surface enhanced...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2017-11, Vol.142 (23), p.4536-4543 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4543 |
---|---|
container_issue | 23 |
container_start_page | 4536 |
container_title | Analyst (London) |
container_volume | 142 |
creator | Liu, Keng-Ku Tadepalli, Sirimuvva Wang, Zheyu Jiang, Qisheng Singamaneni, Srikanth |
description | Hollow plasmonic nanostructures with built-in and accessible electromagnetic hotspots such as nanorattles, obtained through a galvanic replacement reaction, have received wide attention in chemical and biological sensing and targeted drug delivery. In this study, we investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes. We found that the SERS efficacy of the nanorattles is governed by the plasmon extinction intensity, localized surface plasmon resonance (LSPR) wavelength of the nanostructures with respect to the excitation source and intensity of the electromagnetic field at the hotspot, with the latter playing a determining role. Finite-difference time-domain (FDTD) simulations showed excellent agreement with the experimental findings that an optimal degree of galvanic replacement is critical for maximum SERS enhancement. The rational design and synthesis of the plasmonic nanorattles based on these findings can make these nanostructures highly attractive for SERS-based chemical and biological sensing and bioimaging.
We investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes. |
doi_str_mv | 10.1039/c7an01595j |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c7an01595j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010824781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f1f23d14e0b81c7618ad6a28c53965436f870e19e2abbb72571caec0be1647ff3</originalsourceid><addsrcrecordid>eNpFkc1LxDAQxYMo7rp68a4UvAnVTNI07XFZ_EQUXD2XNJ26XbppTVJl_3ujq-thGIb58Yb3hpBjoBdAeX6ppTIURC6WO2QMPE1iIVi2S8aUUh6zVCQjcuDcMoxABd0nI5YDgBBiTNTc20H7wWJcYY-mQuOj-dXzPFLaNx-NX0ddHfWtcqvONDoyynRWed-iiz4bv4jKoWl93JgIW9Tediv1ZtAHctF514c6JHu1ah0e_fYJeb2-epndxg9PN3ez6UOsOZc-rqFmvIIEaZmBlilkqkoVy7TgeXDA0zqTFCFHpsqylExI0Ao1LRHSRNY1n5CzjW5vu_cBnS-W3WBNOFmw4DtjicwgUOcbStvOOYt10dtmpey6AFp8p1nM5PTxJ837AJ_-Sg7lCqst-hdfAE42gHV6u_1_B_8CCOB62g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010824781</pqid></control><display><type>article</type><title>Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Liu, Keng-Ku ; Tadepalli, Sirimuvva ; Wang, Zheyu ; Jiang, Qisheng ; Singamaneni, Srikanth</creator><creatorcontrib>Liu, Keng-Ku ; Tadepalli, Sirimuvva ; Wang, Zheyu ; Jiang, Qisheng ; Singamaneni, Srikanth</creatorcontrib><description>Hollow plasmonic nanostructures with built-in and accessible electromagnetic hotspots such as nanorattles, obtained through a galvanic replacement reaction, have received wide attention in chemical and biological sensing and targeted drug delivery. In this study, we investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes. We found that the SERS efficacy of the nanorattles is governed by the plasmon extinction intensity, localized surface plasmon resonance (LSPR) wavelength of the nanostructures with respect to the excitation source and intensity of the electromagnetic field at the hotspot, with the latter playing a determining role. Finite-difference time-domain (FDTD) simulations showed excellent agreement with the experimental findings that an optimal degree of galvanic replacement is critical for maximum SERS enhancement. The rational design and synthesis of the plasmonic nanorattles based on these findings can make these nanostructures highly attractive for SERS-based chemical and biological sensing and bioimaging.
We investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/c7an01595j</identifier><identifier>PMID: 29111555</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Drug delivery systems ; Electromagnetic fields ; Finite difference method ; Finite difference time domain method ; Gold ; Medical imaging ; Nanostructure ; Raman spectra ; Silver</subject><ispartof>Analyst (London), 2017-11, Vol.142 (23), p.4536-4543</ispartof><rights>Copyright Royal Society of Chemistry 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f1f23d14e0b81c7618ad6a28c53965436f870e19e2abbb72571caec0be1647ff3</citedby><cites>FETCH-LOGICAL-c337t-f1f23d14e0b81c7618ad6a28c53965436f870e19e2abbb72571caec0be1647ff3</cites><orcidid>0000-0002-7203-2613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2831,2832,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29111555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Keng-Ku</creatorcontrib><creatorcontrib>Tadepalli, Sirimuvva</creatorcontrib><creatorcontrib>Wang, Zheyu</creatorcontrib><creatorcontrib>Jiang, Qisheng</creatorcontrib><creatorcontrib>Singamaneni, Srikanth</creatorcontrib><title>Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>Hollow plasmonic nanostructures with built-in and accessible electromagnetic hotspots such as nanorattles, obtained through a galvanic replacement reaction, have received wide attention in chemical and biological sensing and targeted drug delivery. In this study, we investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes. We found that the SERS efficacy of the nanorattles is governed by the plasmon extinction intensity, localized surface plasmon resonance (LSPR) wavelength of the nanostructures with respect to the excitation source and intensity of the electromagnetic field at the hotspot, with the latter playing a determining role. Finite-difference time-domain (FDTD) simulations showed excellent agreement with the experimental findings that an optimal degree of galvanic replacement is critical for maximum SERS enhancement. The rational design and synthesis of the plasmonic nanorattles based on these findings can make these nanostructures highly attractive for SERS-based chemical and biological sensing and bioimaging.
We investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes.</description><subject>Drug delivery systems</subject><subject>Electromagnetic fields</subject><subject>Finite difference method</subject><subject>Finite difference time domain method</subject><subject>Gold</subject><subject>Medical imaging</subject><subject>Nanostructure</subject><subject>Raman spectra</subject><subject>Silver</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFkc1LxDAQxYMo7rp68a4UvAnVTNI07XFZ_EQUXD2XNJ26XbppTVJl_3ujq-thGIb58Yb3hpBjoBdAeX6ppTIURC6WO2QMPE1iIVi2S8aUUh6zVCQjcuDcMoxABd0nI5YDgBBiTNTc20H7wWJcYY-mQuOj-dXzPFLaNx-NX0ddHfWtcqvONDoyynRWed-iiz4bv4jKoWl93JgIW9Tediv1ZtAHctF514c6JHu1ah0e_fYJeb2-epndxg9PN3ez6UOsOZc-rqFmvIIEaZmBlilkqkoVy7TgeXDA0zqTFCFHpsqylExI0Ao1LRHSRNY1n5CzjW5vu_cBnS-W3WBNOFmw4DtjicwgUOcbStvOOYt10dtmpey6AFp8p1nM5PTxJ837AJ_-Sg7lCqst-hdfAE42gHV6u_1_B_8CCOB62g</recordid><startdate>20171120</startdate><enddate>20171120</enddate><creator>Liu, Keng-Ku</creator><creator>Tadepalli, Sirimuvva</creator><creator>Wang, Zheyu</creator><creator>Jiang, Qisheng</creator><creator>Singamaneni, Srikanth</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7203-2613</orcidid></search><sort><creationdate>20171120</creationdate><title>Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots</title><author>Liu, Keng-Ku ; Tadepalli, Sirimuvva ; Wang, Zheyu ; Jiang, Qisheng ; Singamaneni, Srikanth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f1f23d14e0b81c7618ad6a28c53965436f870e19e2abbb72571caec0be1647ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Drug delivery systems</topic><topic>Electromagnetic fields</topic><topic>Finite difference method</topic><topic>Finite difference time domain method</topic><topic>Gold</topic><topic>Medical imaging</topic><topic>Nanostructure</topic><topic>Raman spectra</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Keng-Ku</creatorcontrib><creatorcontrib>Tadepalli, Sirimuvva</creatorcontrib><creatorcontrib>Wang, Zheyu</creatorcontrib><creatorcontrib>Jiang, Qisheng</creatorcontrib><creatorcontrib>Singamaneni, Srikanth</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Keng-Ku</au><au>Tadepalli, Sirimuvva</au><au>Wang, Zheyu</au><au>Jiang, Qisheng</au><au>Singamaneni, Srikanth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2017-11-20</date><risdate>2017</risdate><volume>142</volume><issue>23</issue><spage>4536</spage><epage>4543</epage><pages>4536-4543</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>Hollow plasmonic nanostructures with built-in and accessible electromagnetic hotspots such as nanorattles, obtained through a galvanic replacement reaction, have received wide attention in chemical and biological sensing and targeted drug delivery. In this study, we investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes. We found that the SERS efficacy of the nanorattles is governed by the plasmon extinction intensity, localized surface plasmon resonance (LSPR) wavelength of the nanostructures with respect to the excitation source and intensity of the electromagnetic field at the hotspot, with the latter playing a determining role. Finite-difference time-domain (FDTD) simulations showed excellent agreement with the experimental findings that an optimal degree of galvanic replacement is critical for maximum SERS enhancement. The rational design and synthesis of the plasmonic nanorattles based on these findings can make these nanostructures highly attractive for SERS-based chemical and biological sensing and bioimaging.
We investigate the surface enhanced Raman scattering (SERS) activity of plasmonic nanorattles obtained through different degrees of galvanic replacement of Au@Ag nanocubes.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29111555</pmid><doi>10.1039/c7an01595j</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7203-2613</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2654 |
ispartof | Analyst (London), 2017-11, Vol.142 (23), p.4536-4543 |
issn | 0003-2654 1364-5528 |
language | eng |
recordid | cdi_rsc_primary_c7an01595j |
source | Royal Society of Chemistry Journals Archive (1841-2007); Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Drug delivery systems Electromagnetic fields Finite difference method Finite difference time domain method Gold Medical imaging Nanostructure Raman spectra Silver |
title | Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-dependent%20SERS%20activity%20of%20plasmonic%20nanorattles%20with%20built-in%20electromagnetic%20hotspots&rft.jtitle=Analyst%20(London)&rft.au=Liu,%20Keng-Ku&rft.date=2017-11-20&rft.volume=142&rft.issue=23&rft.spage=4536&rft.epage=4543&rft.pages=4536-4543&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/c7an01595j&rft_dat=%3Cproquest_rsc_p%3E2010824781%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010824781&rft_id=info:pmid/29111555&rfr_iscdi=true |