Highly specific C-C bond cleavage induced FRET fluorescence for in vivo biological nitric oxide imagingElectronic supplementary information (ESI) available. See DOI: 10.1039/c6sc04071c

A novel Förster resonance energy transfer (FRET) fluorescence "off-on" system based on the highly specific, sensitive and effective C-C bond cleavage of certain dihydropyridine derivatives was reported for real-time quantitative imaging of nitric oxide (NO). 1,4-Dihydropyridine was synthes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Hua, Zhang, Deliang, Gao, Mengna, Huang, Lumei, Tang, Longguang, Li, Zijing, Chen, Xiaoyuan, Zhang, Xianzhong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel Förster resonance energy transfer (FRET) fluorescence "off-on" system based on the highly specific, sensitive and effective C-C bond cleavage of certain dihydropyridine derivatives was reported for real-time quantitative imaging of nitric oxide (NO). 1,4-Dihydropyridine was synthesized as a novel linker which could connect customized fluorophores and their corresponding quenchers. The specific and quantitative response to NO is confirmed using fluorescence spectrometry with the classical example of fluorescein isothiocyanate (FITC) and [4′-( N , N ′-dimethylamino)phenylazo] benzoyl (DABCYL). The fluorescence intensity increased linearly with the increase in the amount of NO. Cells incubated with an exogenous NO donor emitted fluorescence as expected. A high fluorescence intensity was detected in macrophages which generate NO when incubated with lipopolysaccharide (LPS). The in vivo imaging shows about an 8-fold contrast between Freund's adjuvant stimulated feet and normal feet in mice after intravenous injection, which was the first example of in vivo semiquantitative fluorescence imaging of NO in mammals. A novel FRET fluorescence "off-on" system based on the highly specific, sensitive and effective C-C bond cleavage of certain dihydropyridine derivatives was reported for real-time quantitative imaging of nitric oxide (NO).
ISSN:2041-6520
2041-6539
DOI:10.1039/c6sc04071c