Mesoporous SiO2/carbon hollow spheres applied towards a high rate-performance Li-battery anodeElectronic supplementary information (ESI) available. See DOI: 10.1039/c6qi00125d
Mesoporous SiO 2 /C hollow spheres have been successfully synthesized via a one-step template process and carbonization of a mesoporous SiO 2 /poly(ethylene oxide)/phenolic formaldehyde resin hollow nanocomposite, and then evaluated as anode materials for lithium-ion batteries. The continuous carbon...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 145 |
---|---|
container_issue | 11 |
container_start_page | 1398 |
container_title | |
container_volume | 3 |
creator | Wang, Chien-Wen Liu, Kung-Wen Chen, Wei-Fu Zhou, Jing-De Lin, Hong-Ping Hsu, Chun-Han Kuo, Ping-Lin |
description | Mesoporous SiO
2
/C hollow spheres have been successfully synthesized
via
a one-step template process and carbonization of a mesoporous SiO
2
/poly(ethylene oxide)/phenolic formaldehyde resin hollow nanocomposite, and then evaluated as anode materials for lithium-ion batteries. The continuous carbon framework significantly led the SiO
2
/C hollow spheres to reach a high conductivity (3.9 × 10
−4
S cm
−1
) compared with the SiO
2
hollow spheres ( |
doi_str_mv | 10.1039/c6qi00125d |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c6qi00125d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c6qi00125d</sourcerecordid><originalsourceid>FETCH-rsc_primary_c6qi00125d3</originalsourceid><addsrcrecordid>eNqFj8FKxDAQhoMguKx78S6MNz10N2ntgl614oKyh3ov02RqI2kSk6yLT-UrGkTwIOhp-Plmvp9h7ETwpeDV1UquXzXnoqzVAZuVvC4LUdfVEVvE-MIzEJdcrPmMfTxSdN4Ft4vQ6m25khh6Z2F0xrg9RD9SoAjovdGkILk9BpUzjPp5hICJCk9hcGFCKwkedNFjShTeAa1T1BiSKTirJcRddtBENmGm2n7dJJ27zpt2cwH4htpgb2gJLRHcbjfX8PubY3Y4oIm0-J5zdnrXPN3cFyHKzgc9ZXn3s17N2dlfvPNqqP5zfALcUGtR</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mesoporous SiO2/carbon hollow spheres applied towards a high rate-performance Li-battery anodeElectronic supplementary information (ESI) available. See DOI: 10.1039/c6qi00125d</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Chien-Wen ; Liu, Kung-Wen ; Chen, Wei-Fu ; Zhou, Jing-De ; Lin, Hong-Ping ; Hsu, Chun-Han ; Kuo, Ping-Lin</creator><creatorcontrib>Wang, Chien-Wen ; Liu, Kung-Wen ; Chen, Wei-Fu ; Zhou, Jing-De ; Lin, Hong-Ping ; Hsu, Chun-Han ; Kuo, Ping-Lin</creatorcontrib><description>Mesoporous SiO
2
/C hollow spheres have been successfully synthesized
via
a one-step template process and carbonization of a mesoporous SiO
2
/poly(ethylene oxide)/phenolic formaldehyde resin hollow nanocomposite, and then evaluated as anode materials for lithium-ion batteries. The continuous carbon framework significantly led the SiO
2
/C hollow spheres to reach a high conductivity (3.9 × 10
−4
S cm
−1
) compared with the SiO
2
hollow spheres (<10
−9
S cm
−1
), furthermore, the unique hollow nanostructure with a large volume interior and numerous mesopores plugged with carbon in the silica shell, could accommodate the volume variation and improve the structural strain for Li ion conduction, as well as allow rapid access of Li ions during charge-discharge cycling. For battery applications, at 100 mA g
−1
charge/discharge rates, the reversible capacity of this mesoporous SiO
2
/C anode (624 mA h g
−1
) is over ten times higher than that of the SiO
2
anode (61 mA h g
−1
). More specifically, even under the high discharge rate of 3000 mA g
−1
, this SiO
2
/C hollow nanostructure exhibits a specific capacity of 582 mA h g
−1
, featuring a high retention of more than 90% of its low discharge rate of 100 mA g
−1
. This demonstrates that the effective conduction of electrons through the continuous carbon network and the fast transport of Li ions through the nanoscale SiO
2
shell significantly contribute to the high-rate performance.
The continuous carbon network and the fast transport of Li ions through the SiO
2
shell contribute to a high-rate performance.</description><identifier>EISSN: 2052-1553</identifier><identifier>DOI: 10.1039/c6qi00125d</identifier><language>eng</language><creationdate>2016-11</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Chien-Wen</creatorcontrib><creatorcontrib>Liu, Kung-Wen</creatorcontrib><creatorcontrib>Chen, Wei-Fu</creatorcontrib><creatorcontrib>Zhou, Jing-De</creatorcontrib><creatorcontrib>Lin, Hong-Ping</creatorcontrib><creatorcontrib>Hsu, Chun-Han</creatorcontrib><creatorcontrib>Kuo, Ping-Lin</creatorcontrib><title>Mesoporous SiO2/carbon hollow spheres applied towards a high rate-performance Li-battery anodeElectronic supplementary information (ESI) available. See DOI: 10.1039/c6qi00125d</title><description>Mesoporous SiO
2
/C hollow spheres have been successfully synthesized
via
a one-step template process and carbonization of a mesoporous SiO
2
/poly(ethylene oxide)/phenolic formaldehyde resin hollow nanocomposite, and then evaluated as anode materials for lithium-ion batteries. The continuous carbon framework significantly led the SiO
2
/C hollow spheres to reach a high conductivity (3.9 × 10
−4
S cm
−1
) compared with the SiO
2
hollow spheres (<10
−9
S cm
−1
), furthermore, the unique hollow nanostructure with a large volume interior and numerous mesopores plugged with carbon in the silica shell, could accommodate the volume variation and improve the structural strain for Li ion conduction, as well as allow rapid access of Li ions during charge-discharge cycling. For battery applications, at 100 mA g
−1
charge/discharge rates, the reversible capacity of this mesoporous SiO
2
/C anode (624 mA h g
−1
) is over ten times higher than that of the SiO
2
anode (61 mA h g
−1
). More specifically, even under the high discharge rate of 3000 mA g
−1
, this SiO
2
/C hollow nanostructure exhibits a specific capacity of 582 mA h g
−1
, featuring a high retention of more than 90% of its low discharge rate of 100 mA g
−1
. This demonstrates that the effective conduction of electrons through the continuous carbon network and the fast transport of Li ions through the nanoscale SiO
2
shell significantly contribute to the high-rate performance.
The continuous carbon network and the fast transport of Li ions through the SiO
2
shell contribute to a high-rate performance.</description><issn>2052-1553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj8FKxDAQhoMguKx78S6MNz10N2ntgl614oKyh3ov02RqI2kSk6yLT-UrGkTwIOhp-Plmvp9h7ETwpeDV1UquXzXnoqzVAZuVvC4LUdfVEVvE-MIzEJdcrPmMfTxSdN4Ft4vQ6m25khh6Z2F0xrg9RD9SoAjovdGkILk9BpUzjPp5hICJCk9hcGFCKwkedNFjShTeAa1T1BiSKTirJcRddtBENmGm2n7dJJ27zpt2cwH4htpgb2gJLRHcbjfX8PubY3Y4oIm0-J5zdnrXPN3cFyHKzgc9ZXn3s17N2dlfvPNqqP5zfALcUGtR</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Wang, Chien-Wen</creator><creator>Liu, Kung-Wen</creator><creator>Chen, Wei-Fu</creator><creator>Zhou, Jing-De</creator><creator>Lin, Hong-Ping</creator><creator>Hsu, Chun-Han</creator><creator>Kuo, Ping-Lin</creator><scope/></search><sort><creationdate>20161101</creationdate><title>Mesoporous SiO2/carbon hollow spheres applied towards a high rate-performance Li-battery anodeElectronic supplementary information (ESI) available. See DOI: 10.1039/c6qi00125d</title><author>Wang, Chien-Wen ; Liu, Kung-Wen ; Chen, Wei-Fu ; Zhou, Jing-De ; Lin, Hong-Ping ; Hsu, Chun-Han ; Kuo, Ping-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c6qi00125d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chien-Wen</creatorcontrib><creatorcontrib>Liu, Kung-Wen</creatorcontrib><creatorcontrib>Chen, Wei-Fu</creatorcontrib><creatorcontrib>Zhou, Jing-De</creatorcontrib><creatorcontrib>Lin, Hong-Ping</creatorcontrib><creatorcontrib>Hsu, Chun-Han</creatorcontrib><creatorcontrib>Kuo, Ping-Lin</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chien-Wen</au><au>Liu, Kung-Wen</au><au>Chen, Wei-Fu</au><au>Zhou, Jing-De</au><au>Lin, Hong-Ping</au><au>Hsu, Chun-Han</au><au>Kuo, Ping-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoporous SiO2/carbon hollow spheres applied towards a high rate-performance Li-battery anodeElectronic supplementary information (ESI) available. See DOI: 10.1039/c6qi00125d</atitle><date>2016-11-01</date><risdate>2016</risdate><volume>3</volume><issue>11</issue><spage>1398</spage><epage>145</epage><pages>1398-145</pages><eissn>2052-1553</eissn><abstract>Mesoporous SiO
2
/C hollow spheres have been successfully synthesized
via
a one-step template process and carbonization of a mesoporous SiO
2
/poly(ethylene oxide)/phenolic formaldehyde resin hollow nanocomposite, and then evaluated as anode materials for lithium-ion batteries. The continuous carbon framework significantly led the SiO
2
/C hollow spheres to reach a high conductivity (3.9 × 10
−4
S cm
−1
) compared with the SiO
2
hollow spheres (<10
−9
S cm
−1
), furthermore, the unique hollow nanostructure with a large volume interior and numerous mesopores plugged with carbon in the silica shell, could accommodate the volume variation and improve the structural strain for Li ion conduction, as well as allow rapid access of Li ions during charge-discharge cycling. For battery applications, at 100 mA g
−1
charge/discharge rates, the reversible capacity of this mesoporous SiO
2
/C anode (624 mA h g
−1
) is over ten times higher than that of the SiO
2
anode (61 mA h g
−1
). More specifically, even under the high discharge rate of 3000 mA g
−1
, this SiO
2
/C hollow nanostructure exhibits a specific capacity of 582 mA h g
−1
, featuring a high retention of more than 90% of its low discharge rate of 100 mA g
−1
. This demonstrates that the effective conduction of electrons through the continuous carbon network and the fast transport of Li ions through the nanoscale SiO
2
shell significantly contribute to the high-rate performance.
The continuous carbon network and the fast transport of Li ions through the SiO
2
shell contribute to a high-rate performance.</abstract><doi>10.1039/c6qi00125d</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2052-1553 |
ispartof | |
issn | 2052-1553 |
language | eng |
recordid | cdi_rsc_primary_c6qi00125d |
source | Royal Society Of Chemistry Journals 2008- |
title | Mesoporous SiO2/carbon hollow spheres applied towards a high rate-performance Li-battery anodeElectronic supplementary information (ESI) available. See DOI: 10.1039/c6qi00125d |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoporous%20SiO2/carbon%20hollow%20spheres%20applied%20towards%20a%20high%20rate-performance%20Li-battery%20anodeElectronic%20supplementary%20information%20(ESI)%20available.%20See%20DOI:%2010.1039/c6qi00125d&rft.au=Wang,%20Chien-Wen&rft.date=2016-11-01&rft.volume=3&rft.issue=11&rft.spage=1398&rft.epage=145&rft.pages=1398-145&rft.eissn=2052-1553&rft_id=info:doi/10.1039/c6qi00125d&rft_dat=%3Crsc%3Ec6qi00125d%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |