Far-field optical nanothermometry using individual sub-50 nm upconverting nanoparticles

We demonstrate far-field optical thermometry using individual NaYF 4 nanoparticles doped with 2% Er 3+ and 20% Yb 3+ . Isolated 20 × 20 × 40 nm 3 particles were identified using only far-field optical imaging, confirmed by subsequent scanning electron microscopy. The luminescence thermometry respons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2016-06, Vol.8 (22), p.11611-11616
Hauptverfasser: Kilbane, Jacob D, Chan, Emory M, Monachon, Christian, Borys, Nicholas J, Levy, Elizabeth S, Pickel, Andrea D, Urban, Jeffrey J, Schuck, P. James, Dames, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11616
container_issue 22
container_start_page 11611
container_title Nanoscale
container_volume 8
creator Kilbane, Jacob D
Chan, Emory M
Monachon, Christian
Borys, Nicholas J
Levy, Elizabeth S
Pickel, Andrea D
Urban, Jeffrey J
Schuck, P. James
Dames, Chris
description We demonstrate far-field optical thermometry using individual NaYF 4 nanoparticles doped with 2% Er 3+ and 20% Yb 3+ . Isolated 20 × 20 × 40 nm 3 particles were identified using only far-field optical imaging, confirmed by subsequent scanning electron microscopy. The luminescence thermometry response for five such single particles was characterized for temperatures from 300 K to 400 K. A standard Arrhenius model widely used for larger particles can still be accurately applied to these sub-50 nm particles, with good particle-to-particle uniformity (response coefficients exhibited standard deviations below 5%). With its spatial resolution on the order of 50 nm when imaging a single particle, far below the diffraction limit, this technique has potential applications for both fundamental thermal measurements and nanoscale metrology in industrial applications. Temperature measurement of a single, photoluminescent NaYF 4 :ErYb nanoparticle, smaller than 50 nm, using only far-field optics.
doi_str_mv 10.1039/c6nr01479h
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c6nr01479h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793907811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-789bcce2b54372542c0b535b422bd6a3e0d197e06b3e17c9b66409940540fc443</originalsourceid><addsrcrecordid>eNqN0c1LwzAYBvAgipvTi3elRxGqbz6aLEcZzglDQRSPJUkzF2nTmrSD_fd2bs6rp7yQXx7C8yJ0juEGA5W3hvsAmAm5PEBDAgxSSgU53M-cDdBJjJ8AXFJOj9GACII55myI3qcqpAtnyyKpm9YZVSZe-bpd2lDVlW3DOumi8x-J84VbuaLrQex0mkHiq6RrTO1XNrQbsXnXqH42pY2n6GihymjPducIvU3vXyezdP788Di5m6eGMtKmYiy1MZbojPVfzhgxoDOaaUaILriiFgoshQWuqcXCSM05AykZZAwWhjE6Qlfb3CbUX52NbV65aGxZKm_rLuZ43KcKyPA_qJBUghhj3NPrLTWhjjHYRd4EV6mwzjHkm87zCX96-el81uPLXW6nK1vs6W_JPbjYghDN_vZvafQb3KOFvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793907811</pqid></control><display><type>article</type><title>Far-field optical nanothermometry using individual sub-50 nm upconverting nanoparticles</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kilbane, Jacob D ; Chan, Emory M ; Monachon, Christian ; Borys, Nicholas J ; Levy, Elizabeth S ; Pickel, Andrea D ; Urban, Jeffrey J ; Schuck, P. James ; Dames, Chris</creator><creatorcontrib>Kilbane, Jacob D ; Chan, Emory M ; Monachon, Christian ; Borys, Nicholas J ; Levy, Elizabeth S ; Pickel, Andrea D ; Urban, Jeffrey J ; Schuck, P. James ; Dames, Chris</creatorcontrib><description>We demonstrate far-field optical thermometry using individual NaYF 4 nanoparticles doped with 2% Er 3+ and 20% Yb 3+ . Isolated 20 × 20 × 40 nm 3 particles were identified using only far-field optical imaging, confirmed by subsequent scanning electron microscopy. The luminescence thermometry response for five such single particles was characterized for temperatures from 300 K to 400 K. A standard Arrhenius model widely used for larger particles can still be accurately applied to these sub-50 nm particles, with good particle-to-particle uniformity (response coefficients exhibited standard deviations below 5%). With its spatial resolution on the order of 50 nm when imaging a single particle, far below the diffraction limit, this technique has potential applications for both fundamental thermal measurements and nanoscale metrology in industrial applications. Temperature measurement of a single, photoluminescent NaYF 4 :ErYb nanoparticle, smaller than 50 nm, using only far-field optics.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c6nr01479h</identifier><identifier>PMID: 27216164</identifier><language>eng</language><publisher>England</publisher><subject>Diffraction ; Imaging ; Luminescence ; Metrology ; Nanoparticles ; Nanostructure ; Standard deviation ; Thermal measurements</subject><ispartof>Nanoscale, 2016-06, Vol.8 (22), p.11611-11616</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-789bcce2b54372542c0b535b422bd6a3e0d197e06b3e17c9b66409940540fc443</citedby><cites>FETCH-LOGICAL-c342t-789bcce2b54372542c0b535b422bd6a3e0d197e06b3e17c9b66409940540fc443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27216164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kilbane, Jacob D</creatorcontrib><creatorcontrib>Chan, Emory M</creatorcontrib><creatorcontrib>Monachon, Christian</creatorcontrib><creatorcontrib>Borys, Nicholas J</creatorcontrib><creatorcontrib>Levy, Elizabeth S</creatorcontrib><creatorcontrib>Pickel, Andrea D</creatorcontrib><creatorcontrib>Urban, Jeffrey J</creatorcontrib><creatorcontrib>Schuck, P. James</creatorcontrib><creatorcontrib>Dames, Chris</creatorcontrib><title>Far-field optical nanothermometry using individual sub-50 nm upconverting nanoparticles</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>We demonstrate far-field optical thermometry using individual NaYF 4 nanoparticles doped with 2% Er 3+ and 20% Yb 3+ . Isolated 20 × 20 × 40 nm 3 particles were identified using only far-field optical imaging, confirmed by subsequent scanning electron microscopy. The luminescence thermometry response for five such single particles was characterized for temperatures from 300 K to 400 K. A standard Arrhenius model widely used for larger particles can still be accurately applied to these sub-50 nm particles, with good particle-to-particle uniformity (response coefficients exhibited standard deviations below 5%). With its spatial resolution on the order of 50 nm when imaging a single particle, far below the diffraction limit, this technique has potential applications for both fundamental thermal measurements and nanoscale metrology in industrial applications. Temperature measurement of a single, photoluminescent NaYF 4 :ErYb nanoparticle, smaller than 50 nm, using only far-field optics.</description><subject>Diffraction</subject><subject>Imaging</subject><subject>Luminescence</subject><subject>Metrology</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Standard deviation</subject><subject>Thermal measurements</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0c1LwzAYBvAgipvTi3elRxGqbz6aLEcZzglDQRSPJUkzF2nTmrSD_fd2bs6rp7yQXx7C8yJ0juEGA5W3hvsAmAm5PEBDAgxSSgU53M-cDdBJjJ8AXFJOj9GACII55myI3qcqpAtnyyKpm9YZVSZe-bpd2lDVlW3DOumi8x-J84VbuaLrQex0mkHiq6RrTO1XNrQbsXnXqH42pY2n6GihymjPducIvU3vXyezdP788Di5m6eGMtKmYiy1MZbojPVfzhgxoDOaaUaILriiFgoshQWuqcXCSM05AykZZAwWhjE6Qlfb3CbUX52NbV65aGxZKm_rLuZ43KcKyPA_qJBUghhj3NPrLTWhjjHYRd4EV6mwzjHkm87zCX96-el81uPLXW6nK1vs6W_JPbjYghDN_vZvafQb3KOFvQ</recordid><startdate>20160602</startdate><enddate>20160602</enddate><creator>Kilbane, Jacob D</creator><creator>Chan, Emory M</creator><creator>Monachon, Christian</creator><creator>Borys, Nicholas J</creator><creator>Levy, Elizabeth S</creator><creator>Pickel, Andrea D</creator><creator>Urban, Jeffrey J</creator><creator>Schuck, P. James</creator><creator>Dames, Chris</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160602</creationdate><title>Far-field optical nanothermometry using individual sub-50 nm upconverting nanoparticles</title><author>Kilbane, Jacob D ; Chan, Emory M ; Monachon, Christian ; Borys, Nicholas J ; Levy, Elizabeth S ; Pickel, Andrea D ; Urban, Jeffrey J ; Schuck, P. James ; Dames, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-789bcce2b54372542c0b535b422bd6a3e0d197e06b3e17c9b66409940540fc443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Diffraction</topic><topic>Imaging</topic><topic>Luminescence</topic><topic>Metrology</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Standard deviation</topic><topic>Thermal measurements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kilbane, Jacob D</creatorcontrib><creatorcontrib>Chan, Emory M</creatorcontrib><creatorcontrib>Monachon, Christian</creatorcontrib><creatorcontrib>Borys, Nicholas J</creatorcontrib><creatorcontrib>Levy, Elizabeth S</creatorcontrib><creatorcontrib>Pickel, Andrea D</creatorcontrib><creatorcontrib>Urban, Jeffrey J</creatorcontrib><creatorcontrib>Schuck, P. James</creatorcontrib><creatorcontrib>Dames, Chris</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kilbane, Jacob D</au><au>Chan, Emory M</au><au>Monachon, Christian</au><au>Borys, Nicholas J</au><au>Levy, Elizabeth S</au><au>Pickel, Andrea D</au><au>Urban, Jeffrey J</au><au>Schuck, P. James</au><au>Dames, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Far-field optical nanothermometry using individual sub-50 nm upconverting nanoparticles</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2016-06-02</date><risdate>2016</risdate><volume>8</volume><issue>22</issue><spage>11611</spage><epage>11616</epage><pages>11611-11616</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>We demonstrate far-field optical thermometry using individual NaYF 4 nanoparticles doped with 2% Er 3+ and 20% Yb 3+ . Isolated 20 × 20 × 40 nm 3 particles were identified using only far-field optical imaging, confirmed by subsequent scanning electron microscopy. The luminescence thermometry response for five such single particles was characterized for temperatures from 300 K to 400 K. A standard Arrhenius model widely used for larger particles can still be accurately applied to these sub-50 nm particles, with good particle-to-particle uniformity (response coefficients exhibited standard deviations below 5%). With its spatial resolution on the order of 50 nm when imaging a single particle, far below the diffraction limit, this technique has potential applications for both fundamental thermal measurements and nanoscale metrology in industrial applications. Temperature measurement of a single, photoluminescent NaYF 4 :ErYb nanoparticle, smaller than 50 nm, using only far-field optics.</abstract><cop>England</cop><pmid>27216164</pmid><doi>10.1039/c6nr01479h</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2016-06, Vol.8 (22), p.11611-11616
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_c6nr01479h
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Diffraction
Imaging
Luminescence
Metrology
Nanoparticles
Nanostructure
Standard deviation
Thermal measurements
title Far-field optical nanothermometry using individual sub-50 nm upconverting nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Far-field%20optical%20nanothermometry%20using%20individual%20sub-50%20nm%20upconverting%20nanoparticles&rft.jtitle=Nanoscale&rft.au=Kilbane,%20Jacob%20D&rft.date=2016-06-02&rft.volume=8&rft.issue=22&rft.spage=11611&rft.epage=11616&rft.pages=11611-11616&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c6nr01479h&rft_dat=%3Cproquest_rsc_p%3E1793907811%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793907811&rft_id=info:pmid/27216164&rfr_iscdi=true