Thermal characterization of carbon nanotube foam using MEMS microhotplates and thermographic analysis

Thermal material properties play a fundamental role in the thermal management of microelectronic systems. The porous nature of carbon nanotube (CNT) arrays results in a very high surface area to volume ratio, which makes the material attractive for surface driven heat transfer mechanisms. Here, we r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2016-04, Vol.8 (15), p.8266-8275
Hauptverfasser: Silvestri, Cinzia, Riccio, Michele, Poelma, Ren H, Morana, Bruno, Vollebregt, Sten, Santagata, Fabio, Irace, Andrea, Zhang, Guo Qi, Sarro, Pasqualina M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8275
container_issue 15
container_start_page 8266
container_title Nanoscale
container_volume 8
creator Silvestri, Cinzia
Riccio, Michele
Poelma, Ren H
Morana, Bruno
Vollebregt, Sten
Santagata, Fabio
Irace, Andrea
Zhang, Guo Qi
Sarro, Pasqualina M
description Thermal material properties play a fundamental role in the thermal management of microelectronic systems. The porous nature of carbon nanotube (CNT) arrays results in a very high surface area to volume ratio, which makes the material attractive for surface driven heat transfer mechanisms. Here, we report on the heat transfer performance of lithographically defined micropins made of carbon nanotube (CNT) nanofoam, directly grown on microhotplates (MHPs). The MHP is used as an in situ characterization platform with controllable hot-spot and integrated temperature sensor. Under natural convection, and equivalent power supplied, we measured a significant reduction in hot-spot temperature when augmenting the MHP surface with CNT micropins. In particular, a strong enhancement of convective and radiative heat transfer towards the surrounding environment is recorded, due to the high aspect ratio and the foam-like morphology of the patterned CNTs. By combining electrical characterizations with high-resolution thermographic microscopy analysis, we quantified the heat losses induced by the integrated CNT nanofoams and we found a unique temperature dependency of the equivalent convective heat transfer coefficient, H c . The obtained results with the proposed non-destructive characterization method demonstrate that significant improvements can be achieved in microelectronic thermal management and hierarchical structured porous material characterization. Lithographically defined carbon nanotube foam structures enhance the surface driven heat transfer mechanisms of microelectronic systems.
doi_str_mv 10.1039/c6nr00745g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_rsc_primary_c6nr00745g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808111997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-75372f2ffaed5996353f64e41051dcb63f5eb23bfcf329ca5361b6ae0fd565063</originalsourceid><addsrcrecordid>eNqFkTFPwzAQhS0EoqWwsIM8IqSAHcdOPaKqFCQKEpQ5ujh2Y5TExU6G8utJaSkj0z3dfXq6u4fQOSU3lDB5q0TjCUkTvjxAw5gkJGIsjQ_3WiQDdBLCByFCMsGO0SBOCaNxzIdIL0rta6iwKsGDarW3X9Ba12BnsAKf96qBxrVdrrFxUOMu2GaJ59P5G66t8q507aqCVgcMTYHbjZ1beliVVvUdqNbBhlN0ZKAK-mxXR-j9frqYPERPL7PHyd1TpJIkaaOU93ub2BjQBZdSMM6MSHRCCaeFygUzXOcxy40yLJYKOBM0F6CJKbjgRLARutr6rrz77HRos9oGpasKGu26kNExGVNKpUz_R9Mx7f1JKnv0eov214bgtclW3tbg1xkl2SaBbCKeX38SmPXw5c63y2td7NHfl_fAxRbwQe2nfxGyb3FYi-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781536079</pqid></control><display><type>article</type><title>Thermal characterization of carbon nanotube foam using MEMS microhotplates and thermographic analysis</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Silvestri, Cinzia ; Riccio, Michele ; Poelma, Ren H ; Morana, Bruno ; Vollebregt, Sten ; Santagata, Fabio ; Irace, Andrea ; Zhang, Guo Qi ; Sarro, Pasqualina M</creator><creatorcontrib>Silvestri, Cinzia ; Riccio, Michele ; Poelma, Ren H ; Morana, Bruno ; Vollebregt, Sten ; Santagata, Fabio ; Irace, Andrea ; Zhang, Guo Qi ; Sarro, Pasqualina M</creatorcontrib><description>Thermal material properties play a fundamental role in the thermal management of microelectronic systems. The porous nature of carbon nanotube (CNT) arrays results in a very high surface area to volume ratio, which makes the material attractive for surface driven heat transfer mechanisms. Here, we report on the heat transfer performance of lithographically defined micropins made of carbon nanotube (CNT) nanofoam, directly grown on microhotplates (MHPs). The MHP is used as an in situ characterization platform with controllable hot-spot and integrated temperature sensor. Under natural convection, and equivalent power supplied, we measured a significant reduction in hot-spot temperature when augmenting the MHP surface with CNT micropins. In particular, a strong enhancement of convective and radiative heat transfer towards the surrounding environment is recorded, due to the high aspect ratio and the foam-like morphology of the patterned CNTs. By combining electrical characterizations with high-resolution thermographic microscopy analysis, we quantified the heat losses induced by the integrated CNT nanofoams and we found a unique temperature dependency of the equivalent convective heat transfer coefficient, H c . The obtained results with the proposed non-destructive characterization method demonstrate that significant improvements can be achieved in microelectronic thermal management and hierarchical structured porous material characterization. Lithographically defined carbon nanotube foam structures enhance the surface driven heat transfer mechanisms of microelectronic systems.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c6nr00745g</identifier><identifier>PMID: 27031225</identifier><language>eng</language><publisher>England</publisher><subject>Arrays ; Carbon nanotubes ; Equivalence ; Heat transfer ; Microelectronics ; Nanostructure ; Thermal management ; Thermography</subject><ispartof>Nanoscale, 2016-04, Vol.8 (15), p.8266-8275</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-75372f2ffaed5996353f64e41051dcb63f5eb23bfcf329ca5361b6ae0fd565063</citedby><cites>FETCH-LOGICAL-c444t-75372f2ffaed5996353f64e41051dcb63f5eb23bfcf329ca5361b6ae0fd565063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27031225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silvestri, Cinzia</creatorcontrib><creatorcontrib>Riccio, Michele</creatorcontrib><creatorcontrib>Poelma, Ren H</creatorcontrib><creatorcontrib>Morana, Bruno</creatorcontrib><creatorcontrib>Vollebregt, Sten</creatorcontrib><creatorcontrib>Santagata, Fabio</creatorcontrib><creatorcontrib>Irace, Andrea</creatorcontrib><creatorcontrib>Zhang, Guo Qi</creatorcontrib><creatorcontrib>Sarro, Pasqualina M</creatorcontrib><title>Thermal characterization of carbon nanotube foam using MEMS microhotplates and thermographic analysis</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Thermal material properties play a fundamental role in the thermal management of microelectronic systems. The porous nature of carbon nanotube (CNT) arrays results in a very high surface area to volume ratio, which makes the material attractive for surface driven heat transfer mechanisms. Here, we report on the heat transfer performance of lithographically defined micropins made of carbon nanotube (CNT) nanofoam, directly grown on microhotplates (MHPs). The MHP is used as an in situ characterization platform with controllable hot-spot and integrated temperature sensor. Under natural convection, and equivalent power supplied, we measured a significant reduction in hot-spot temperature when augmenting the MHP surface with CNT micropins. In particular, a strong enhancement of convective and radiative heat transfer towards the surrounding environment is recorded, due to the high aspect ratio and the foam-like morphology of the patterned CNTs. By combining electrical characterizations with high-resolution thermographic microscopy analysis, we quantified the heat losses induced by the integrated CNT nanofoams and we found a unique temperature dependency of the equivalent convective heat transfer coefficient, H c . The obtained results with the proposed non-destructive characterization method demonstrate that significant improvements can be achieved in microelectronic thermal management and hierarchical structured porous material characterization. Lithographically defined carbon nanotube foam structures enhance the surface driven heat transfer mechanisms of microelectronic systems.</description><subject>Arrays</subject><subject>Carbon nanotubes</subject><subject>Equivalence</subject><subject>Heat transfer</subject><subject>Microelectronics</subject><subject>Nanostructure</subject><subject>Thermal management</subject><subject>Thermography</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkTFPwzAQhS0EoqWwsIM8IqSAHcdOPaKqFCQKEpQ5ujh2Y5TExU6G8utJaSkj0z3dfXq6u4fQOSU3lDB5q0TjCUkTvjxAw5gkJGIsjQ_3WiQDdBLCByFCMsGO0SBOCaNxzIdIL0rta6iwKsGDarW3X9Ba12BnsAKf96qBxrVdrrFxUOMu2GaJ59P5G66t8q507aqCVgcMTYHbjZ1beliVVvUdqNbBhlN0ZKAK-mxXR-j9frqYPERPL7PHyd1TpJIkaaOU93ub2BjQBZdSMM6MSHRCCaeFygUzXOcxy40yLJYKOBM0F6CJKbjgRLARutr6rrz77HRos9oGpasKGu26kNExGVNKpUz_R9Mx7f1JKnv0eov214bgtclW3tbg1xkl2SaBbCKeX38SmPXw5c63y2td7NHfl_fAxRbwQe2nfxGyb3FYi-A</recordid><startdate>20160421</startdate><enddate>20160421</enddate><creator>Silvestri, Cinzia</creator><creator>Riccio, Michele</creator><creator>Poelma, Ren H</creator><creator>Morana, Bruno</creator><creator>Vollebregt, Sten</creator><creator>Santagata, Fabio</creator><creator>Irace, Andrea</creator><creator>Zhang, Guo Qi</creator><creator>Sarro, Pasqualina M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160421</creationdate><title>Thermal characterization of carbon nanotube foam using MEMS microhotplates and thermographic analysis</title><author>Silvestri, Cinzia ; Riccio, Michele ; Poelma, Ren H ; Morana, Bruno ; Vollebregt, Sten ; Santagata, Fabio ; Irace, Andrea ; Zhang, Guo Qi ; Sarro, Pasqualina M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-75372f2ffaed5996353f64e41051dcb63f5eb23bfcf329ca5361b6ae0fd565063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arrays</topic><topic>Carbon nanotubes</topic><topic>Equivalence</topic><topic>Heat transfer</topic><topic>Microelectronics</topic><topic>Nanostructure</topic><topic>Thermal management</topic><topic>Thermography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silvestri, Cinzia</creatorcontrib><creatorcontrib>Riccio, Michele</creatorcontrib><creatorcontrib>Poelma, Ren H</creatorcontrib><creatorcontrib>Morana, Bruno</creatorcontrib><creatorcontrib>Vollebregt, Sten</creatorcontrib><creatorcontrib>Santagata, Fabio</creatorcontrib><creatorcontrib>Irace, Andrea</creatorcontrib><creatorcontrib>Zhang, Guo Qi</creatorcontrib><creatorcontrib>Sarro, Pasqualina M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silvestri, Cinzia</au><au>Riccio, Michele</au><au>Poelma, Ren H</au><au>Morana, Bruno</au><au>Vollebregt, Sten</au><au>Santagata, Fabio</au><au>Irace, Andrea</au><au>Zhang, Guo Qi</au><au>Sarro, Pasqualina M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal characterization of carbon nanotube foam using MEMS microhotplates and thermographic analysis</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2016-04-21</date><risdate>2016</risdate><volume>8</volume><issue>15</issue><spage>8266</spage><epage>8275</epage><pages>8266-8275</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Thermal material properties play a fundamental role in the thermal management of microelectronic systems. The porous nature of carbon nanotube (CNT) arrays results in a very high surface area to volume ratio, which makes the material attractive for surface driven heat transfer mechanisms. Here, we report on the heat transfer performance of lithographically defined micropins made of carbon nanotube (CNT) nanofoam, directly grown on microhotplates (MHPs). The MHP is used as an in situ characterization platform with controllable hot-spot and integrated temperature sensor. Under natural convection, and equivalent power supplied, we measured a significant reduction in hot-spot temperature when augmenting the MHP surface with CNT micropins. In particular, a strong enhancement of convective and radiative heat transfer towards the surrounding environment is recorded, due to the high aspect ratio and the foam-like morphology of the patterned CNTs. By combining electrical characterizations with high-resolution thermographic microscopy analysis, we quantified the heat losses induced by the integrated CNT nanofoams and we found a unique temperature dependency of the equivalent convective heat transfer coefficient, H c . The obtained results with the proposed non-destructive characterization method demonstrate that significant improvements can be achieved in microelectronic thermal management and hierarchical structured porous material characterization. Lithographically defined carbon nanotube foam structures enhance the surface driven heat transfer mechanisms of microelectronic systems.</abstract><cop>England</cop><pmid>27031225</pmid><doi>10.1039/c6nr00745g</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2016-04, Vol.8 (15), p.8266-8275
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_c6nr00745g
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Arrays
Carbon nanotubes
Equivalence
Heat transfer
Microelectronics
Nanostructure
Thermal management
Thermography
title Thermal characterization of carbon nanotube foam using MEMS microhotplates and thermographic analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T13%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20characterization%20of%20carbon%20nanotube%20foam%20using%20MEMS%20microhotplates%20and%20thermographic%20analysis&rft.jtitle=Nanoscale&rft.au=Silvestri,%20Cinzia&rft.date=2016-04-21&rft.volume=8&rft.issue=15&rft.spage=8266&rft.epage=8275&rft.pages=8266-8275&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c6nr00745g&rft_dat=%3Cproquest_cross%3E1808111997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781536079&rft_id=info:pmid/27031225&rfr_iscdi=true