Hydrogenation of levoglucosenone to renewable chemicalsElectronic supplementary information (ESI) available: Gaussian DFT calculations; 13C NMR of reaction products; CO chemisorption data; synthesis of reaction intermediates; product deconvolution methods; solvent degradation data; and catalyst recycling data. See DOI: 10.1039/c6gc03028a
We have studied the hydrogenation of levoglucosenone (LGO) to dihydrolevoglucosenone (Cyrene), levoglucosanol (Lgol), and tetrahydrofurandimethanol (THFDM) and elucidated the reaction network over supported palladium catalysts. At low temperature (40 ° C) over a Pd/Al 2 O 3 catalyst, LGO is selectiv...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1285 |
---|---|
container_issue | 5 |
container_start_page | 1278 |
container_title | |
container_volume | 19 |
creator | Krishna, Siddarth H McClelland, Daniel J Rashke, Quinn A Dumesic, James A Huber, George W |
description | We have studied the hydrogenation of levoglucosenone (LGO) to dihydrolevoglucosenone (Cyrene), levoglucosanol (Lgol), and tetrahydrofurandimethanol (THFDM) and elucidated the reaction network over supported palladium catalysts. At low temperature (40
°
C) over a Pd/Al
2
O
3
catalyst, LGO is selectively hydrogenated to Cyrene. At intermediate temperatures (100
°
C) over a Pd/Al
2
O
3
catalyst, Cyrene is selectively hydrogenated to Lgol, with an excess of the
exo
-Lgol isomer produced over the
endo
-Lgol isomer. At higher temperatures (150
°
C) over a bifunctional Pd/SiO
2
-Al
2
O
3
catalyst, Lgol is converted to THFDM in 58% selectivity, with 78% overall selectivity to 1,6-hexanediol precursors. The ratio of
cis
-THFDM relative to
trans
-THFDM is approximately 2.5, and this ratio is independent of the Lgol feed stereoisomer ratio. Tetrahydropyran-2-methanol-5-ketone (THP2M5one) and tetrahydropyran-2-methanol-5-hydroxyl (THP2M5H) are side-products of Lgol hydrogenolysis, but neither of these species are precursors to THFDM.
Herein, we elucidate the reaction network for catalytic hydrogenation of the biomass-derived intermediate levoglucosenone into several different renewable chemicals. |
doi_str_mv | 10.1039/c6gc03028a |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_c6gc03028a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c6gc03028a</sourcerecordid><originalsourceid>FETCH-rsc_primary_c6gc03028a3</originalsourceid><addsrcrecordid>eNqFkM1PAjEUxFejiYhevJs8b3oAd1myCBz5EA5KItzJs3271HTbTdvF7H9vWYgfMdFTX_KbmU4mCK6isB2Fcf-eJRkL47DzgMdBI-omcavf6YUnn3fSOQvOrX0LwyjqJd3G0XJWcaMzUuiEVqBTkLTVmSyZtqS0InAaDCl6x1dJwDaUC4bSTiQxZ7QSDGxZFJJyUg5NBUKl2uT7tNvJcn4HuEUhd-4BPGJprUAF4-kKfAwrZa20Q4jiETw_vewaGEJW-wujecmcp6PF_murTVEjjg6HYCvlNmSF_WETypHJiQt05L2HFODEtNpqWdainNxGc4-tllvf3ePMIMdv6ai4L-lQVtb5dFYxKVRWwzYsiWC8mA_g9_QXwWnqJ6LLw9sMrqeT1WjWMpatCyNyv9P6Sx43g5u_-LrgafxfxgevQ6kj</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrogenation of levoglucosenone to renewable chemicalsElectronic supplementary information (ESI) available: Gaussian DFT calculations; 13C NMR of reaction products; CO chemisorption data; synthesis of reaction intermediates; product deconvolution methods; solvent degradation data; and catalyst recycling data. See DOI: 10.1039/c6gc03028a</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Krishna, Siddarth H ; McClelland, Daniel J ; Rashke, Quinn A ; Dumesic, James A ; Huber, George W</creator><creatorcontrib>Krishna, Siddarth H ; McClelland, Daniel J ; Rashke, Quinn A ; Dumesic, James A ; Huber, George W</creatorcontrib><description>We have studied the hydrogenation of levoglucosenone (LGO) to dihydrolevoglucosenone (Cyrene), levoglucosanol (Lgol), and tetrahydrofurandimethanol (THFDM) and elucidated the reaction network over supported palladium catalysts. At low temperature (40
°
C) over a Pd/Al
2
O
3
catalyst, LGO is selectively hydrogenated to Cyrene. At intermediate temperatures (100
°
C) over a Pd/Al
2
O
3
catalyst, Cyrene is selectively hydrogenated to Lgol, with an excess of the
exo
-Lgol isomer produced over the
endo
-Lgol isomer. At higher temperatures (150
°
C) over a bifunctional Pd/SiO
2
-Al
2
O
3
catalyst, Lgol is converted to THFDM in 58% selectivity, with 78% overall selectivity to 1,6-hexanediol precursors. The ratio of
cis
-THFDM relative to
trans
-THFDM is approximately 2.5, and this ratio is independent of the Lgol feed stereoisomer ratio. Tetrahydropyran-2-methanol-5-ketone (THP2M5one) and tetrahydropyran-2-methanol-5-hydroxyl (THP2M5H) are side-products of Lgol hydrogenolysis, but neither of these species are precursors to THFDM.
Herein, we elucidate the reaction network for catalytic hydrogenation of the biomass-derived intermediate levoglucosenone into several different renewable chemicals.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/c6gc03028a</identifier><language>eng</language><creationdate>2017-03</creationdate><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Krishna, Siddarth H</creatorcontrib><creatorcontrib>McClelland, Daniel J</creatorcontrib><creatorcontrib>Rashke, Quinn A</creatorcontrib><creatorcontrib>Dumesic, James A</creatorcontrib><creatorcontrib>Huber, George W</creatorcontrib><title>Hydrogenation of levoglucosenone to renewable chemicalsElectronic supplementary information (ESI) available: Gaussian DFT calculations; 13C NMR of reaction products; CO chemisorption data; synthesis of reaction intermediates; product deconvolution methods; solvent degradation data; and catalyst recycling data. See DOI: 10.1039/c6gc03028a</title><description>We have studied the hydrogenation of levoglucosenone (LGO) to dihydrolevoglucosenone (Cyrene), levoglucosanol (Lgol), and tetrahydrofurandimethanol (THFDM) and elucidated the reaction network over supported palladium catalysts. At low temperature (40
°
C) over a Pd/Al
2
O
3
catalyst, LGO is selectively hydrogenated to Cyrene. At intermediate temperatures (100
°
C) over a Pd/Al
2
O
3
catalyst, Cyrene is selectively hydrogenated to Lgol, with an excess of the
exo
-Lgol isomer produced over the
endo
-Lgol isomer. At higher temperatures (150
°
C) over a bifunctional Pd/SiO
2
-Al
2
O
3
catalyst, Lgol is converted to THFDM in 58% selectivity, with 78% overall selectivity to 1,6-hexanediol precursors. The ratio of
cis
-THFDM relative to
trans
-THFDM is approximately 2.5, and this ratio is independent of the Lgol feed stereoisomer ratio. Tetrahydropyran-2-methanol-5-ketone (THP2M5one) and tetrahydropyran-2-methanol-5-hydroxyl (THP2M5H) are side-products of Lgol hydrogenolysis, but neither of these species are precursors to THFDM.
Herein, we elucidate the reaction network for catalytic hydrogenation of the biomass-derived intermediate levoglucosenone into several different renewable chemicals.</description><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFkM1PAjEUxFejiYhevJs8b3oAd1myCBz5EA5KItzJs3271HTbTdvF7H9vWYgfMdFTX_KbmU4mCK6isB2Fcf-eJRkL47DzgMdBI-omcavf6YUnn3fSOQvOrX0LwyjqJd3G0XJWcaMzUuiEVqBTkLTVmSyZtqS0InAaDCl6x1dJwDaUC4bSTiQxZ7QSDGxZFJJyUg5NBUKl2uT7tNvJcn4HuEUhd-4BPGJprUAF4-kKfAwrZa20Q4jiETw_vewaGEJW-wujecmcp6PF_murTVEjjg6HYCvlNmSF_WETypHJiQt05L2HFODEtNpqWdainNxGc4-tllvf3ePMIMdv6ai4L-lQVtb5dFYxKVRWwzYsiWC8mA_g9_QXwWnqJ6LLw9sMrqeT1WjWMpatCyNyv9P6Sx43g5u_-LrgafxfxgevQ6kj</recordid><startdate>20170306</startdate><enddate>20170306</enddate><creator>Krishna, Siddarth H</creator><creator>McClelland, Daniel J</creator><creator>Rashke, Quinn A</creator><creator>Dumesic, James A</creator><creator>Huber, George W</creator><scope/></search><sort><creationdate>20170306</creationdate><title>Hydrogenation of levoglucosenone to renewable chemicalsElectronic supplementary information (ESI) available: Gaussian DFT calculations; 13C NMR of reaction products; CO chemisorption data; synthesis of reaction intermediates; product deconvolution methods; solvent degradation data; and catalyst recycling data. See DOI: 10.1039/c6gc03028a</title><author>Krishna, Siddarth H ; McClelland, Daniel J ; Rashke, Quinn A ; Dumesic, James A ; Huber, George W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_c6gc03028a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishna, Siddarth H</creatorcontrib><creatorcontrib>McClelland, Daniel J</creatorcontrib><creatorcontrib>Rashke, Quinn A</creatorcontrib><creatorcontrib>Dumesic, James A</creatorcontrib><creatorcontrib>Huber, George W</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishna, Siddarth H</au><au>McClelland, Daniel J</au><au>Rashke, Quinn A</au><au>Dumesic, James A</au><au>Huber, George W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogenation of levoglucosenone to renewable chemicalsElectronic supplementary information (ESI) available: Gaussian DFT calculations; 13C NMR of reaction products; CO chemisorption data; synthesis of reaction intermediates; product deconvolution methods; solvent degradation data; and catalyst recycling data. See DOI: 10.1039/c6gc03028a</atitle><date>2017-03-06</date><risdate>2017</risdate><volume>19</volume><issue>5</issue><spage>1278</spage><epage>1285</epage><pages>1278-1285</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>We have studied the hydrogenation of levoglucosenone (LGO) to dihydrolevoglucosenone (Cyrene), levoglucosanol (Lgol), and tetrahydrofurandimethanol (THFDM) and elucidated the reaction network over supported palladium catalysts. At low temperature (40
°
C) over a Pd/Al
2
O
3
catalyst, LGO is selectively hydrogenated to Cyrene. At intermediate temperatures (100
°
C) over a Pd/Al
2
O
3
catalyst, Cyrene is selectively hydrogenated to Lgol, with an excess of the
exo
-Lgol isomer produced over the
endo
-Lgol isomer. At higher temperatures (150
°
C) over a bifunctional Pd/SiO
2
-Al
2
O
3
catalyst, Lgol is converted to THFDM in 58% selectivity, with 78% overall selectivity to 1,6-hexanediol precursors. The ratio of
cis
-THFDM relative to
trans
-THFDM is approximately 2.5, and this ratio is independent of the Lgol feed stereoisomer ratio. Tetrahydropyran-2-methanol-5-ketone (THP2M5one) and tetrahydropyran-2-methanol-5-hydroxyl (THP2M5H) are side-products of Lgol hydrogenolysis, but neither of these species are precursors to THFDM.
Herein, we elucidate the reaction network for catalytic hydrogenation of the biomass-derived intermediate levoglucosenone into several different renewable chemicals.</abstract><doi>10.1039/c6gc03028a</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_rsc_primary_c6gc03028a |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
title | Hydrogenation of levoglucosenone to renewable chemicalsElectronic supplementary information (ESI) available: Gaussian DFT calculations; 13C NMR of reaction products; CO chemisorption data; synthesis of reaction intermediates; product deconvolution methods; solvent degradation data; and catalyst recycling data. See DOI: 10.1039/c6gc03028a |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogenation%20of%20levoglucosenone%20to%20renewable%20chemicalsElectronic%20supplementary%20information%20(ESI)%20available:%20Gaussian%20DFT%20calculations;%2013C%20NMR%20of%20reaction%20products;%20CO%20chemisorption%20data;%20synthesis%20of%20reaction%20intermediates;%20product%20deconvolution%20methods;%20solvent%20degradation%20data;%20and%20catalyst%20recycling%20data.%20See%20DOI:%2010.1039/c6gc03028a&rft.au=Krishna,%20Siddarth%20H&rft.date=2017-03-06&rft.volume=19&rft.issue=5&rft.spage=1278&rft.epage=1285&rft.pages=1278-1285&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/c6gc03028a&rft_dat=%3Crsc%3Ec6gc03028a%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |