Delineating the conformational flexibility of trisaccharides from NMR spectroscopy experiments and computer simulations

The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure. Instead, they are better represented by an ensemble of conformations associated with their structural diversity and flexibility. In this study, we delineate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2016-07, Vol.18 (28), p.18776-18794
Hauptverfasser: Yang, Mingjun, Angles d'Ortoli, Thibault, Säwén, Elin, Jana, Madhurima, Widmalm, Göran, MacKerell, Alexander D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18794
container_issue 28
container_start_page 18776
container_title Physical chemistry chemical physics : PCCP
container_volume 18
creator Yang, Mingjun
Angles d'Ortoli, Thibault
Säwén, Elin
Jana, Madhurima
Widmalm, Göran
MacKerell, Alexander D
description The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure. Instead, they are better represented by an ensemble of conformations associated with their structural diversity and flexibility. In this study, we delineate the conformational heterogeneity of five trisaccharides via a combination of experimental and computational techniques. Experimental NMR measurements target conformationally sensitive parameters, including J couplings and effective distances around the glycosidic linkages, while the computational simulations apply the well-calibrated additive CHARMM carbohydrate force field in combination with efficient enhanced sampling molecular dynamics simulation methods. Analysis of conformational heterogeneity is performed based on sampling of discreet states as defined by dihedral angles, on root-mean-square differences of Cartesian coordinates and on the extent of volume sampled. Conformational clustering, based on the glycosidic linkage dihedral angles, shows that accounting for the full range of sampled conformations is required to reproduce the experimental data, emphasizing the utility of the molecular simulations in obtaining an atomic detailed description of the conformational properties of the saccharides. Results show the presence of differential conformational preferences as a function of primary sequence and glycosidic linkage types. Significant differences in conformational ensembles associated with the anomeric configuration of a single glycosidic linkage reinforce the impact of such changes on the conformational properties of carbohydrates. The present structural insights of the studied trisaccharides represent a foundation for understanding the range of conformations adopted in larger oligosaccharides and how these molecules encode their conformational heterogeneity into the monosaccharide sequence. The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure.
doi_str_mv 10.1039/c6cp02970a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c6cp02970a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1804859016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-c7470004275f84611a9934fa027e5d3e8dc1a3d243d9a606d81e3871e576263a3</originalsourceid><addsrcrecordid>eNqNkktvEzEUhS0EoiWwYQ_yEiEC9vg13lSKUl5SeQgBW8v13EmMPOPB9tDm3-M2JdAdK1u-n4_Ovfcg9JiSl5Qw_cpJN5FGK2LvoGPKJVtq0vK7h7uSR-hBzj8IIVRQdh8dNYpxyTU7RhenEPwItvhxg8sWsItjH9NQH-JoA-4DXPpzH3zZ4djjkny2zm1t8h1k3Kc44I8fvuA8gSspZhenHYbLCZIfYCwZ27GrksM0F0g4-2EO18r5IbrX25Dh0c25QN_evP66frc8-_T2_Xp1tnSC0rJ0iqtqmzdK9C2XlFqtGe8taRSIjkHbOWpZ13DWaSuJ7FoKrFUUhJKNZJYt0Iu9br6AaT43UzVm085E682p_74yMW1Mng1ljHBS8ZM9XtkBOld7SDbc-nW7Mvqt2cRfhmsueB33Aj27EUjx5wy5mMFnByHYEeKcDW0bISQTiv4HSngrNKFXqs_3qKszzgn6gyNKzFUGzFquP19nYFXhp__2cED_LL0CT_ZAyu5Q_Rsi9htFfblD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1804859016</pqid></control><display><type>article</type><title>Delineating the conformational flexibility of trisaccharides from NMR spectroscopy experiments and computer simulations</title><source>SWEPUB Freely available online</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Yang, Mingjun ; Angles d'Ortoli, Thibault ; Säwén, Elin ; Jana, Madhurima ; Widmalm, Göran ; MacKerell, Alexander D</creator><creatorcontrib>Yang, Mingjun ; Angles d'Ortoli, Thibault ; Säwén, Elin ; Jana, Madhurima ; Widmalm, Göran ; MacKerell, Alexander D</creatorcontrib><description>The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure. Instead, they are better represented by an ensemble of conformations associated with their structural diversity and flexibility. In this study, we delineate the conformational heterogeneity of five trisaccharides via a combination of experimental and computational techniques. Experimental NMR measurements target conformationally sensitive parameters, including J couplings and effective distances around the glycosidic linkages, while the computational simulations apply the well-calibrated additive CHARMM carbohydrate force field in combination with efficient enhanced sampling molecular dynamics simulation methods. Analysis of conformational heterogeneity is performed based on sampling of discreet states as defined by dihedral angles, on root-mean-square differences of Cartesian coordinates and on the extent of volume sampled. Conformational clustering, based on the glycosidic linkage dihedral angles, shows that accounting for the full range of sampled conformations is required to reproduce the experimental data, emphasizing the utility of the molecular simulations in obtaining an atomic detailed description of the conformational properties of the saccharides. Results show the presence of differential conformational preferences as a function of primary sequence and glycosidic linkage types. Significant differences in conformational ensembles associated with the anomeric configuration of a single glycosidic linkage reinforce the impact of such changes on the conformational properties of carbohydrates. The present structural insights of the studied trisaccharides represent a foundation for understanding the range of conformations adopted in larger oligosaccharides and how these molecules encode their conformational heterogeneity into the monosaccharide sequence. The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure.</description><identifier>ISSN: 1463-9076</identifier><identifier>ISSN: 1463-9084</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c6cp02970a</identifier><identifier>PMID: 27346493</identifier><language>eng</language><publisher>England</publisher><subject>Carbohydrates ; Computer simulation ; Flexibility ; Heterogeneity ; Linkages ; Mathematical models ; Organic Chemistry ; organisk kemi ; Saccharides ; Sampling</subject><ispartof>Physical chemistry chemical physics : PCCP, 2016-07, Vol.18 (28), p.18776-18794</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-c7470004275f84611a9934fa027e5d3e8dc1a3d243d9a606d81e3871e576263a3</citedby><cites>FETCH-LOGICAL-c511t-c7470004275f84611a9934fa027e5d3e8dc1a3d243d9a606d81e3871e576263a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,551,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27346493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-133040$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Mingjun</creatorcontrib><creatorcontrib>Angles d'Ortoli, Thibault</creatorcontrib><creatorcontrib>Säwén, Elin</creatorcontrib><creatorcontrib>Jana, Madhurima</creatorcontrib><creatorcontrib>Widmalm, Göran</creatorcontrib><creatorcontrib>MacKerell, Alexander D</creatorcontrib><title>Delineating the conformational flexibility of trisaccharides from NMR spectroscopy experiments and computer simulations</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure. Instead, they are better represented by an ensemble of conformations associated with their structural diversity and flexibility. In this study, we delineate the conformational heterogeneity of five trisaccharides via a combination of experimental and computational techniques. Experimental NMR measurements target conformationally sensitive parameters, including J couplings and effective distances around the glycosidic linkages, while the computational simulations apply the well-calibrated additive CHARMM carbohydrate force field in combination with efficient enhanced sampling molecular dynamics simulation methods. Analysis of conformational heterogeneity is performed based on sampling of discreet states as defined by dihedral angles, on root-mean-square differences of Cartesian coordinates and on the extent of volume sampled. Conformational clustering, based on the glycosidic linkage dihedral angles, shows that accounting for the full range of sampled conformations is required to reproduce the experimental data, emphasizing the utility of the molecular simulations in obtaining an atomic detailed description of the conformational properties of the saccharides. Results show the presence of differential conformational preferences as a function of primary sequence and glycosidic linkage types. Significant differences in conformational ensembles associated with the anomeric configuration of a single glycosidic linkage reinforce the impact of such changes on the conformational properties of carbohydrates. The present structural insights of the studied trisaccharides represent a foundation for understanding the range of conformations adopted in larger oligosaccharides and how these molecules encode their conformational heterogeneity into the monosaccharide sequence. The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure.</description><subject>Carbohydrates</subject><subject>Computer simulation</subject><subject>Flexibility</subject><subject>Heterogeneity</subject><subject>Linkages</subject><subject>Mathematical models</subject><subject>Organic Chemistry</subject><subject>organisk kemi</subject><subject>Saccharides</subject><subject>Sampling</subject><issn>1463-9076</issn><issn>1463-9084</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNqNkktvEzEUhS0EoiWwYQ_yEiEC9vg13lSKUl5SeQgBW8v13EmMPOPB9tDm3-M2JdAdK1u-n4_Ovfcg9JiSl5Qw_cpJN5FGK2LvoGPKJVtq0vK7h7uSR-hBzj8IIVRQdh8dNYpxyTU7RhenEPwItvhxg8sWsItjH9NQH-JoA-4DXPpzH3zZ4djjkny2zm1t8h1k3Kc44I8fvuA8gSspZhenHYbLCZIfYCwZ27GrksM0F0g4-2EO18r5IbrX25Dh0c25QN_evP66frc8-_T2_Xp1tnSC0rJ0iqtqmzdK9C2XlFqtGe8taRSIjkHbOWpZ13DWaSuJ7FoKrFUUhJKNZJYt0Iu9br6AaT43UzVm085E682p_74yMW1Mng1ljHBS8ZM9XtkBOld7SDbc-nW7Mvqt2cRfhmsueB33Aj27EUjx5wy5mMFnByHYEeKcDW0bISQTiv4HSngrNKFXqs_3qKszzgn6gyNKzFUGzFquP19nYFXhp__2cED_LL0CT_ZAyu5Q_Rsi9htFfblD</recordid><startdate>20160728</startdate><enddate>20160728</enddate><creator>Yang, Mingjun</creator><creator>Angles d'Ortoli, Thibault</creator><creator>Säwén, Elin</creator><creator>Jana, Madhurima</creator><creator>Widmalm, Göran</creator><creator>MacKerell, Alexander D</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope></search><sort><creationdate>20160728</creationdate><title>Delineating the conformational flexibility of trisaccharides from NMR spectroscopy experiments and computer simulations</title><author>Yang, Mingjun ; Angles d'Ortoli, Thibault ; Säwén, Elin ; Jana, Madhurima ; Widmalm, Göran ; MacKerell, Alexander D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-c7470004275f84611a9934fa027e5d3e8dc1a3d243d9a606d81e3871e576263a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbohydrates</topic><topic>Computer simulation</topic><topic>Flexibility</topic><topic>Heterogeneity</topic><topic>Linkages</topic><topic>Mathematical models</topic><topic>Organic Chemistry</topic><topic>organisk kemi</topic><topic>Saccharides</topic><topic>Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Mingjun</creatorcontrib><creatorcontrib>Angles d'Ortoli, Thibault</creatorcontrib><creatorcontrib>Säwén, Elin</creatorcontrib><creatorcontrib>Jana, Madhurima</creatorcontrib><creatorcontrib>Widmalm, Göran</creatorcontrib><creatorcontrib>MacKerell, Alexander D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Mingjun</au><au>Angles d'Ortoli, Thibault</au><au>Säwén, Elin</au><au>Jana, Madhurima</au><au>Widmalm, Göran</au><au>MacKerell, Alexander D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delineating the conformational flexibility of trisaccharides from NMR spectroscopy experiments and computer simulations</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2016-07-28</date><risdate>2016</risdate><volume>18</volume><issue>28</issue><spage>18776</spage><epage>18794</epage><pages>18776-18794</pages><issn>1463-9076</issn><issn>1463-9084</issn><eissn>1463-9084</eissn><abstract>The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure. Instead, they are better represented by an ensemble of conformations associated with their structural diversity and flexibility. In this study, we delineate the conformational heterogeneity of five trisaccharides via a combination of experimental and computational techniques. Experimental NMR measurements target conformationally sensitive parameters, including J couplings and effective distances around the glycosidic linkages, while the computational simulations apply the well-calibrated additive CHARMM carbohydrate force field in combination with efficient enhanced sampling molecular dynamics simulation methods. Analysis of conformational heterogeneity is performed based on sampling of discreet states as defined by dihedral angles, on root-mean-square differences of Cartesian coordinates and on the extent of volume sampled. Conformational clustering, based on the glycosidic linkage dihedral angles, shows that accounting for the full range of sampled conformations is required to reproduce the experimental data, emphasizing the utility of the molecular simulations in obtaining an atomic detailed description of the conformational properties of the saccharides. Results show the presence of differential conformational preferences as a function of primary sequence and glycosidic linkage types. Significant differences in conformational ensembles associated with the anomeric configuration of a single glycosidic linkage reinforce the impact of such changes on the conformational properties of carbohydrates. The present structural insights of the studied trisaccharides represent a foundation for understanding the range of conformations adopted in larger oligosaccharides and how these molecules encode their conformational heterogeneity into the monosaccharide sequence. The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure.</abstract><cop>England</cop><pmid>27346493</pmid><doi>10.1039/c6cp02970a</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2016-07, Vol.18 (28), p.18776-18794
issn 1463-9076
1463-9084
1463-9084
language eng
recordid cdi_rsc_primary_c6cp02970a
source SWEPUB Freely available online; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Carbohydrates
Computer simulation
Flexibility
Heterogeneity
Linkages
Mathematical models
Organic Chemistry
organisk kemi
Saccharides
Sampling
title Delineating the conformational flexibility of trisaccharides from NMR spectroscopy experiments and computer simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delineating%20the%20conformational%20flexibility%20of%20trisaccharides%20from%20NMR%20spectroscopy%20experiments%20and%20computer%20simulations&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Yang,%20Mingjun&rft.date=2016-07-28&rft.volume=18&rft.issue=28&rft.spage=18776&rft.epage=18794&rft.pages=18776-18794&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c6cp02970a&rft_dat=%3Cproquest_rsc_p%3E1804859016%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1804859016&rft_id=info:pmid/27346493&rfr_iscdi=true