Dark-field differential dynamic microscopy

Differential dynamic microscopy (DDM) is an emerging technique to measure the ensemble dynamics of colloidal and complex fluid motion using optical microscopy in systems that would otherwise be difficult to measure using other methods. To date, DDM has successfully been applied to linear space invar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2016-01, Vol.12 (8), p.244-2452
Hauptverfasser: Bayles, Alexandra V, Squires, Todd M, Helgeson, Matthew E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2452
container_issue 8
container_start_page 244
container_title Soft matter
container_volume 12
creator Bayles, Alexandra V
Squires, Todd M
Helgeson, Matthew E
description Differential dynamic microscopy (DDM) is an emerging technique to measure the ensemble dynamics of colloidal and complex fluid motion using optical microscopy in systems that would otherwise be difficult to measure using other methods. To date, DDM has successfully been applied to linear space invariant imaging modes including bright-field, fluorescence, confocal, polarised, and phase-contrast microscopy to study diverse dynamic phenomena. In this work, we show for the first time how DDM analysis can be extended to dark-field imaging, i.e. a linear space variant (LSV) imaging mode. Specifically, we present a particle-based framework for describing dynamic image correlations in DDM, and use it to derive a correction to the image structure function obtained by DDM that accounts for scatterers with non-homogeneous intensity distributions as they move within the imaging plane. To validate the analysis, we study the Brownian motion of gold nanoparticles, whose plasmonic structure allows for nanometer-scale particles to be imaged under dark-field illumination, in Newtonian liquids. We find that diffusion coefficients of the nanoparticles can be reliably measured by dark-field DDM, even under optically dense concentrations where analysis via multiple-particle tracking microrheology fails. These results demonstrate the potential for DDM analysis to be applied to linear space variant forms of microscopy, providing access to experimental systems unavailable to other imaging modes. Differential dynamic microscopy (DDM) provides facile, high-fidelity measurements of soft matter dynamics. Here, we show how DDM can be extended to dark-field imaging, providing significant improvements for strongly scattering materials.
doi_str_mv 10.1039/c5sm02576a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c5sm02576a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819138833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-e9570a6b10cd37ec0800c144187e2dde7474c1bd7bafbae23edb878de58a69973</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhhdRbK1evCs9SiG6u7NfOZb6CRUPKngLm90JRJMm7raH_ntTU-tRD8MMzMML8wwhp4xeMgrplZOxplxqZffIkGkhEmWE2d_N8DYgRzG-UwpGMHVIBlwZzgHYkEyubfhIihIrP_ZlUWDAxbK01divF7Yu3bir0ETXtOtjclDYKuLJto_I6-3Ny-w-mT_dPcym88QJyZcJplJTq3JGnQeNjhpKHROCGY3ce9RCC8dyr3Nb5BY5oM-NNh6lsSpNNYzIRZ_bhuZzhXGZ1WV0WFV2gc0qZsyAVMAVp_9AWcrAGIC_Ua0UV5p30SMy6dHN5TFgkbWhrG1YZ4xmG-PZTD4_fhufdvD5NneV1-h36I_iDjjrgRDdbvv7MvgC1WaDxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766267256</pqid></control><display><type>article</type><title>Dark-field differential dynamic microscopy</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Bayles, Alexandra V ; Squires, Todd M ; Helgeson, Matthew E</creator><creatorcontrib>Bayles, Alexandra V ; Squires, Todd M ; Helgeson, Matthew E</creatorcontrib><description>Differential dynamic microscopy (DDM) is an emerging technique to measure the ensemble dynamics of colloidal and complex fluid motion using optical microscopy in systems that would otherwise be difficult to measure using other methods. To date, DDM has successfully been applied to linear space invariant imaging modes including bright-field, fluorescence, confocal, polarised, and phase-contrast microscopy to study diverse dynamic phenomena. In this work, we show for the first time how DDM analysis can be extended to dark-field imaging, i.e. a linear space variant (LSV) imaging mode. Specifically, we present a particle-based framework for describing dynamic image correlations in DDM, and use it to derive a correction to the image structure function obtained by DDM that accounts for scatterers with non-homogeneous intensity distributions as they move within the imaging plane. To validate the analysis, we study the Brownian motion of gold nanoparticles, whose plasmonic structure allows for nanometer-scale particles to be imaged under dark-field illumination, in Newtonian liquids. We find that diffusion coefficients of the nanoparticles can be reliably measured by dark-field DDM, even under optically dense concentrations where analysis via multiple-particle tracking microrheology fails. These results demonstrate the potential for DDM analysis to be applied to linear space variant forms of microscopy, providing access to experimental systems unavailable to other imaging modes. Differential dynamic microscopy (DDM) provides facile, high-fidelity measurements of soft matter dynamics. Here, we show how DDM can be extended to dark-field imaging, providing significant improvements for strongly scattering materials.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c5sm02576a</identifier><identifier>PMID: 26822331</identifier><language>eng</language><publisher>England</publisher><subject>Dynamical systems ; Dynamics ; Imaging ; Microscopy ; Nanoparticles ; Nanostructure ; Vector spaces</subject><ispartof>Soft matter, 2016-01, Vol.12 (8), p.244-2452</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-e9570a6b10cd37ec0800c144187e2dde7474c1bd7bafbae23edb878de58a69973</citedby><cites>FETCH-LOGICAL-c452t-e9570a6b10cd37ec0800c144187e2dde7474c1bd7bafbae23edb878de58a69973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26822331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bayles, Alexandra V</creatorcontrib><creatorcontrib>Squires, Todd M</creatorcontrib><creatorcontrib>Helgeson, Matthew E</creatorcontrib><title>Dark-field differential dynamic microscopy</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Differential dynamic microscopy (DDM) is an emerging technique to measure the ensemble dynamics of colloidal and complex fluid motion using optical microscopy in systems that would otherwise be difficult to measure using other methods. To date, DDM has successfully been applied to linear space invariant imaging modes including bright-field, fluorescence, confocal, polarised, and phase-contrast microscopy to study diverse dynamic phenomena. In this work, we show for the first time how DDM analysis can be extended to dark-field imaging, i.e. a linear space variant (LSV) imaging mode. Specifically, we present a particle-based framework for describing dynamic image correlations in DDM, and use it to derive a correction to the image structure function obtained by DDM that accounts for scatterers with non-homogeneous intensity distributions as they move within the imaging plane. To validate the analysis, we study the Brownian motion of gold nanoparticles, whose plasmonic structure allows for nanometer-scale particles to be imaged under dark-field illumination, in Newtonian liquids. We find that diffusion coefficients of the nanoparticles can be reliably measured by dark-field DDM, even under optically dense concentrations where analysis via multiple-particle tracking microrheology fails. These results demonstrate the potential for DDM analysis to be applied to linear space variant forms of microscopy, providing access to experimental systems unavailable to other imaging modes. Differential dynamic microscopy (DDM) provides facile, high-fidelity measurements of soft matter dynamics. Here, we show how DDM can be extended to dark-field imaging, providing significant improvements for strongly scattering materials.</description><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Imaging</subject><subject>Microscopy</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Vector spaces</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AQhhdRbK1evCs9SiG6u7NfOZb6CRUPKngLm90JRJMm7raH_ntTU-tRD8MMzMML8wwhp4xeMgrplZOxplxqZffIkGkhEmWE2d_N8DYgRzG-UwpGMHVIBlwZzgHYkEyubfhIihIrP_ZlUWDAxbK01divF7Yu3bir0ETXtOtjclDYKuLJto_I6-3Ny-w-mT_dPcym88QJyZcJplJTq3JGnQeNjhpKHROCGY3ce9RCC8dyr3Nb5BY5oM-NNh6lsSpNNYzIRZ_bhuZzhXGZ1WV0WFV2gc0qZsyAVMAVp_9AWcrAGIC_Ua0UV5p30SMy6dHN5TFgkbWhrG1YZ4xmG-PZTD4_fhufdvD5NneV1-h36I_iDjjrgRDdbvv7MvgC1WaDxA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Bayles, Alexandra V</creator><creator>Squires, Todd M</creator><creator>Helgeson, Matthew E</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Dark-field differential dynamic microscopy</title><author>Bayles, Alexandra V ; Squires, Todd M ; Helgeson, Matthew E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-e9570a6b10cd37ec0800c144187e2dde7474c1bd7bafbae23edb878de58a69973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Imaging</topic><topic>Microscopy</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayles, Alexandra V</creatorcontrib><creatorcontrib>Squires, Todd M</creatorcontrib><creatorcontrib>Helgeson, Matthew E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayles, Alexandra V</au><au>Squires, Todd M</au><au>Helgeson, Matthew E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dark-field differential dynamic microscopy</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>12</volume><issue>8</issue><spage>244</spage><epage>2452</epage><pages>244-2452</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Differential dynamic microscopy (DDM) is an emerging technique to measure the ensemble dynamics of colloidal and complex fluid motion using optical microscopy in systems that would otherwise be difficult to measure using other methods. To date, DDM has successfully been applied to linear space invariant imaging modes including bright-field, fluorescence, confocal, polarised, and phase-contrast microscopy to study diverse dynamic phenomena. In this work, we show for the first time how DDM analysis can be extended to dark-field imaging, i.e. a linear space variant (LSV) imaging mode. Specifically, we present a particle-based framework for describing dynamic image correlations in DDM, and use it to derive a correction to the image structure function obtained by DDM that accounts for scatterers with non-homogeneous intensity distributions as they move within the imaging plane. To validate the analysis, we study the Brownian motion of gold nanoparticles, whose plasmonic structure allows for nanometer-scale particles to be imaged under dark-field illumination, in Newtonian liquids. We find that diffusion coefficients of the nanoparticles can be reliably measured by dark-field DDM, even under optically dense concentrations where analysis via multiple-particle tracking microrheology fails. These results demonstrate the potential for DDM analysis to be applied to linear space variant forms of microscopy, providing access to experimental systems unavailable to other imaging modes. Differential dynamic microscopy (DDM) provides facile, high-fidelity measurements of soft matter dynamics. Here, we show how DDM can be extended to dark-field imaging, providing significant improvements for strongly scattering materials.</abstract><cop>England</cop><pmid>26822331</pmid><doi>10.1039/c5sm02576a</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2016-01, Vol.12 (8), p.244-2452
issn 1744-683X
1744-6848
language eng
recordid cdi_rsc_primary_c5sm02576a
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Dynamical systems
Dynamics
Imaging
Microscopy
Nanoparticles
Nanostructure
Vector spaces
title Dark-field differential dynamic microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dark-field%20differential%20dynamic%20microscopy&rft.jtitle=Soft%20matter&rft.au=Bayles,%20Alexandra%20V&rft.date=2016-01-01&rft.volume=12&rft.issue=8&rft.spage=244&rft.epage=2452&rft.pages=244-2452&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c5sm02576a&rft_dat=%3Cproquest_rsc_p%3E1819138833%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766267256&rft_id=info:pmid/26822331&rfr_iscdi=true