Post-polymerisation modification of bio-derived unsaturated polyester resins via Michael additions of 1,3-dicarbonylsElectronic supplementary information (ESI) available: Full GPC, DSC and 1H-NMR spectra characterisation. See DOI: 10.1039/c5py01729g
Post-polymerisation modification of α,β-unsaturated polyesters (UPEs) is useful to deliver polymers with tuneable properties and applications different from their parent backbone. Bio-derivable itaconate unsaturated polyesters, with a range of co-monomers, were modified via a heterogeneously catalys...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Post-polymerisation modification of α,β-unsaturated polyesters (UPEs) is useful to deliver polymers with tuneable properties and applications different from their parent backbone. Bio-derivable itaconate unsaturated polyesters, with a range of co-monomers, were modified
via
a heterogeneously catalysed microwave-assisted Michael addition of pendants, acetylacetone (Hacac) and dimethyl malonate (DMM), to the polymer backbones with very short reaction times. Differential scanning calorimetry analysis showed an increase in the glass-transition temperatures of most of the saturated polyesters considered. Solubility and complexation studies demonstrated metal chelating abilities of the acetylacetone pendant can be retained, even following tethering to a polyester backbone. Additionally, it is demonstrated for the first time that Michael addition with Hacac and DMM can be used to reverse Ordelt saturation, an unwanted side-reaction in the synthesis of UPEs.
A rapid (5 min), solventless and heterogeneously catalysed methodology is demonstrated for the first time for the Michael addition of 1,3-dicarbonyls to biomass derived unsaturated polyesters. |
---|---|
ISSN: | 1759-9954 1759-9962 |
DOI: | 10.1039/c5py01729g |