Zebrafish as a model system for characterization of nanoparticles against cancer
Therapeutic nanoparticles (NPs) have great potential to deliver drugs against human diseases. Encapsulation of drugs in NPs protects them from being metabolized, while they are delivered specifically to a target site, thereby reducing toxicity and other side-effects. However, non-specific tissue acc...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2016-01, Vol.8 (2), p.862-877 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 877 |
---|---|
container_issue | 2 |
container_start_page | 862 |
container_title | Nanoscale |
container_volume | 8 |
creator | Evensen, Lasse Johansen, Patrick L Koster, Gerbrand Zhu, Kaizheng Herfindal, Lars Speth, Martin Fenaroli, Federico Hildahl, Jon Bagherifam, Shahla Tulotta, Claudia Prasmickaite, Lina Mælandsmo, Gunhild M Snaar-Jagalska, Ewa Griffiths, Gareth |
description | Therapeutic nanoparticles (NPs) have great potential to deliver drugs against human diseases. Encapsulation of drugs in NPs protects them from being metabolized, while they are delivered specifically to a target site, thereby reducing toxicity and other side-effects. However, non-specific tissue accumulation of NPs, for example in macrophages, especially in the spleen and liver is a general problem with many NPs being developed for cancer therapy. To address the problem of non-specific tissue accumulation of NPs we describe the development of the zebrafish embryo as a transparent vertebrate system for characterization of NPs against cancer. We show that injection of human cancer cells results in tumor-like structures, and that subsequently injected fluorescent NPs, either made of polystyrene or liposomes can be imaged in real-time. NP biodistribution and general
in vivo
properties can be easily monitored in embryos having selective fluorescent labeling of specific tissues. We demonstrate
in vitro
, by using optical tweezer micromanipulation, microscopy and flow cytometry that polyethylene glycol (PEG) coating of NPs decreases the level of adhesion of NPs to macrophages, and also to cancer cells.
In vivo
in zebrafish embryos, PEG coating resulted in longer NP circulation times, decreased macrophage uptake, and reduced adhesion to the endothelium. Importantly, liposomes were observed to accumulate passively and selectively in tumor-like structures comprised of human cancer cells. These results show that zebrafish embryo is a powerful system for microscopy-based screening of NPs on the route to preclinical testing.
The zebrafish embryo enables characterization of nanoparticles against cancer in an
in vivo
vertebrate model. |
doi_str_mv | 10.1039/c5nr07289a |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c5nr07289a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1809626478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-fbe89cddb8ee3e43e89c80db8679f7e87754fe726d02e3b740f8e8e5eb6426673</originalsourceid><addsrcrecordid>eNpFkb1PwzAQxS0EoqWwsIM8IqSAYzu2M1YRX1IFCMHCEjnOmRolcbHTofz1pLSU6e7pfvd0eofQaUquUsLya5N1gUiqcr2HxpRwkjAm6f6uF3yEjmL8JETkTLBDNKJCcJXRbIye36EK2ro4xzpijVtfQ4PjKvbQYusDNnMdtOkhuG_dO99hb3GnO7_QoXemgWHpQ7su9tjozkA4RgdWNxFOtnWC3m5vXov7ZPZ091BMZ4nhnPeJrUDlpq4rBcCAs7VSZJBC5laCkjLjFiQVNaHAKsmJVaAgg0rw4XrJJuhi47sI_msJsS9bFw00je7AL2OZKpILKrhUA3q5QU3wMQaw5SK4VodVmZJynWBZZI8vvwlOB_h867usWqh36F9kA3C2AUI0u-n_C9gPF7Z2jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1809626478</pqid></control><display><type>article</type><title>Zebrafish as a model system for characterization of nanoparticles against cancer</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Evensen, Lasse ; Johansen, Patrick L ; Koster, Gerbrand ; Zhu, Kaizheng ; Herfindal, Lars ; Speth, Martin ; Fenaroli, Federico ; Hildahl, Jon ; Bagherifam, Shahla ; Tulotta, Claudia ; Prasmickaite, Lina ; Mælandsmo, Gunhild M ; Snaar-Jagalska, Ewa ; Griffiths, Gareth</creator><creatorcontrib>Evensen, Lasse ; Johansen, Patrick L ; Koster, Gerbrand ; Zhu, Kaizheng ; Herfindal, Lars ; Speth, Martin ; Fenaroli, Federico ; Hildahl, Jon ; Bagherifam, Shahla ; Tulotta, Claudia ; Prasmickaite, Lina ; Mælandsmo, Gunhild M ; Snaar-Jagalska, Ewa ; Griffiths, Gareth</creatorcontrib><description>Therapeutic nanoparticles (NPs) have great potential to deliver drugs against human diseases. Encapsulation of drugs in NPs protects them from being metabolized, while they are delivered specifically to a target site, thereby reducing toxicity and other side-effects. However, non-specific tissue accumulation of NPs, for example in macrophages, especially in the spleen and liver is a general problem with many NPs being developed for cancer therapy. To address the problem of non-specific tissue accumulation of NPs we describe the development of the zebrafish embryo as a transparent vertebrate system for characterization of NPs against cancer. We show that injection of human cancer cells results in tumor-like structures, and that subsequently injected fluorescent NPs, either made of polystyrene or liposomes can be imaged in real-time. NP biodistribution and general
in vivo
properties can be easily monitored in embryos having selective fluorescent labeling of specific tissues. We demonstrate
in vitro
, by using optical tweezer micromanipulation, microscopy and flow cytometry that polyethylene glycol (PEG) coating of NPs decreases the level of adhesion of NPs to macrophages, and also to cancer cells.
In vivo
in zebrafish embryos, PEG coating resulted in longer NP circulation times, decreased macrophage uptake, and reduced adhesion to the endothelium. Importantly, liposomes were observed to accumulate passively and selectively in tumor-like structures comprised of human cancer cells. These results show that zebrafish embryo is a powerful system for microscopy-based screening of NPs on the route to preclinical testing.
The zebrafish embryo enables characterization of nanoparticles against cancer in an
in vivo
vertebrate model.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c5nr07289a</identifier><identifier>PMID: 26648525</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Cancer ; Cell Line, Tumor ; Disease Models, Animal ; Drug delivery systems ; Embryos ; Flow Cytometry ; Fluorescent Dyes - chemistry ; HEK293 Cells ; Human ; Humans ; Liposomes - chemistry ; Macrophages ; Macrophages - metabolism ; Metal Nanoparticles - chemistry ; Micromanipulation - methods ; Microscopy ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Nanomedicine - methods ; Nanoparticles ; Nanoparticles - chemistry ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Neoplasms - therapy ; Optical Tweezers ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Polymers - chemistry ; Polystyrenes - chemistry ; Tissue Distribution ; Zebrafish ; Zebrafish - embryology</subject><ispartof>Nanoscale, 2016-01, Vol.8 (2), p.862-877</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-fbe89cddb8ee3e43e89c80db8679f7e87754fe726d02e3b740f8e8e5eb6426673</citedby><cites>FETCH-LOGICAL-c444t-fbe89cddb8ee3e43e89c80db8679f7e87754fe726d02e3b740f8e8e5eb6426673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26648525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Evensen, Lasse</creatorcontrib><creatorcontrib>Johansen, Patrick L</creatorcontrib><creatorcontrib>Koster, Gerbrand</creatorcontrib><creatorcontrib>Zhu, Kaizheng</creatorcontrib><creatorcontrib>Herfindal, Lars</creatorcontrib><creatorcontrib>Speth, Martin</creatorcontrib><creatorcontrib>Fenaroli, Federico</creatorcontrib><creatorcontrib>Hildahl, Jon</creatorcontrib><creatorcontrib>Bagherifam, Shahla</creatorcontrib><creatorcontrib>Tulotta, Claudia</creatorcontrib><creatorcontrib>Prasmickaite, Lina</creatorcontrib><creatorcontrib>Mælandsmo, Gunhild M</creatorcontrib><creatorcontrib>Snaar-Jagalska, Ewa</creatorcontrib><creatorcontrib>Griffiths, Gareth</creatorcontrib><title>Zebrafish as a model system for characterization of nanoparticles against cancer</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Therapeutic nanoparticles (NPs) have great potential to deliver drugs against human diseases. Encapsulation of drugs in NPs protects them from being metabolized, while they are delivered specifically to a target site, thereby reducing toxicity and other side-effects. However, non-specific tissue accumulation of NPs, for example in macrophages, especially in the spleen and liver is a general problem with many NPs being developed for cancer therapy. To address the problem of non-specific tissue accumulation of NPs we describe the development of the zebrafish embryo as a transparent vertebrate system for characterization of NPs against cancer. We show that injection of human cancer cells results in tumor-like structures, and that subsequently injected fluorescent NPs, either made of polystyrene or liposomes can be imaged in real-time. NP biodistribution and general
in vivo
properties can be easily monitored in embryos having selective fluorescent labeling of specific tissues. We demonstrate
in vitro
, by using optical tweezer micromanipulation, microscopy and flow cytometry that polyethylene glycol (PEG) coating of NPs decreases the level of adhesion of NPs to macrophages, and also to cancer cells.
In vivo
in zebrafish embryos, PEG coating resulted in longer NP circulation times, decreased macrophage uptake, and reduced adhesion to the endothelium. Importantly, liposomes were observed to accumulate passively and selectively in tumor-like structures comprised of human cancer cells. These results show that zebrafish embryo is a powerful system for microscopy-based screening of NPs on the route to preclinical testing.
The zebrafish embryo enables characterization of nanoparticles against cancer in an
in vivo
vertebrate model.</description><subject>Animals</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Disease Models, Animal</subject><subject>Drug delivery systems</subject><subject>Embryos</subject><subject>Flow Cytometry</subject><subject>Fluorescent Dyes - chemistry</subject><subject>HEK293 Cells</subject><subject>Human</subject><subject>Humans</subject><subject>Liposomes - chemistry</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Micromanipulation - methods</subject><subject>Microscopy</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanomedicine - methods</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - therapy</subject><subject>Optical Tweezers</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers - chemistry</subject><subject>Polystyrenes - chemistry</subject><subject>Tissue Distribution</subject><subject>Zebrafish</subject><subject>Zebrafish - embryology</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkb1PwzAQxS0EoqWwsIM8IqSAYzu2M1YRX1IFCMHCEjnOmRolcbHTofz1pLSU6e7pfvd0eofQaUquUsLya5N1gUiqcr2HxpRwkjAm6f6uF3yEjmL8JETkTLBDNKJCcJXRbIye36EK2ro4xzpijVtfQ4PjKvbQYusDNnMdtOkhuG_dO99hb3GnO7_QoXemgWHpQ7su9tjozkA4RgdWNxFOtnWC3m5vXov7ZPZ091BMZ4nhnPeJrUDlpq4rBcCAs7VSZJBC5laCkjLjFiQVNaHAKsmJVaAgg0rw4XrJJuhi47sI_msJsS9bFw00je7AL2OZKpILKrhUA3q5QU3wMQaw5SK4VodVmZJynWBZZI8vvwlOB_h867usWqh36F9kA3C2AUI0u-n_C9gPF7Z2jw</recordid><startdate>20160114</startdate><enddate>20160114</enddate><creator>Evensen, Lasse</creator><creator>Johansen, Patrick L</creator><creator>Koster, Gerbrand</creator><creator>Zhu, Kaizheng</creator><creator>Herfindal, Lars</creator><creator>Speth, Martin</creator><creator>Fenaroli, Federico</creator><creator>Hildahl, Jon</creator><creator>Bagherifam, Shahla</creator><creator>Tulotta, Claudia</creator><creator>Prasmickaite, Lina</creator><creator>Mælandsmo, Gunhild M</creator><creator>Snaar-Jagalska, Ewa</creator><creator>Griffiths, Gareth</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160114</creationdate><title>Zebrafish as a model system for characterization of nanoparticles against cancer</title><author>Evensen, Lasse ; Johansen, Patrick L ; Koster, Gerbrand ; Zhu, Kaizheng ; Herfindal, Lars ; Speth, Martin ; Fenaroli, Federico ; Hildahl, Jon ; Bagherifam, Shahla ; Tulotta, Claudia ; Prasmickaite, Lina ; Mælandsmo, Gunhild M ; Snaar-Jagalska, Ewa ; Griffiths, Gareth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-fbe89cddb8ee3e43e89c80db8679f7e87754fe726d02e3b740f8e8e5eb6426673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Disease Models, Animal</topic><topic>Drug delivery systems</topic><topic>Embryos</topic><topic>Flow Cytometry</topic><topic>Fluorescent Dyes - chemistry</topic><topic>HEK293 Cells</topic><topic>Human</topic><topic>Humans</topic><topic>Liposomes - chemistry</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Micromanipulation - methods</topic><topic>Microscopy</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanomedicine - methods</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - therapy</topic><topic>Optical Tweezers</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers - chemistry</topic><topic>Polystyrenes - chemistry</topic><topic>Tissue Distribution</topic><topic>Zebrafish</topic><topic>Zebrafish - embryology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evensen, Lasse</creatorcontrib><creatorcontrib>Johansen, Patrick L</creatorcontrib><creatorcontrib>Koster, Gerbrand</creatorcontrib><creatorcontrib>Zhu, Kaizheng</creatorcontrib><creatorcontrib>Herfindal, Lars</creatorcontrib><creatorcontrib>Speth, Martin</creatorcontrib><creatorcontrib>Fenaroli, Federico</creatorcontrib><creatorcontrib>Hildahl, Jon</creatorcontrib><creatorcontrib>Bagherifam, Shahla</creatorcontrib><creatorcontrib>Tulotta, Claudia</creatorcontrib><creatorcontrib>Prasmickaite, Lina</creatorcontrib><creatorcontrib>Mælandsmo, Gunhild M</creatorcontrib><creatorcontrib>Snaar-Jagalska, Ewa</creatorcontrib><creatorcontrib>Griffiths, Gareth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evensen, Lasse</au><au>Johansen, Patrick L</au><au>Koster, Gerbrand</au><au>Zhu, Kaizheng</au><au>Herfindal, Lars</au><au>Speth, Martin</au><au>Fenaroli, Federico</au><au>Hildahl, Jon</au><au>Bagherifam, Shahla</au><au>Tulotta, Claudia</au><au>Prasmickaite, Lina</au><au>Mælandsmo, Gunhild M</au><au>Snaar-Jagalska, Ewa</au><au>Griffiths, Gareth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zebrafish as a model system for characterization of nanoparticles against cancer</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2016-01-14</date><risdate>2016</risdate><volume>8</volume><issue>2</issue><spage>862</spage><epage>877</epage><pages>862-877</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Therapeutic nanoparticles (NPs) have great potential to deliver drugs against human diseases. Encapsulation of drugs in NPs protects them from being metabolized, while they are delivered specifically to a target site, thereby reducing toxicity and other side-effects. However, non-specific tissue accumulation of NPs, for example in macrophages, especially in the spleen and liver is a general problem with many NPs being developed for cancer therapy. To address the problem of non-specific tissue accumulation of NPs we describe the development of the zebrafish embryo as a transparent vertebrate system for characterization of NPs against cancer. We show that injection of human cancer cells results in tumor-like structures, and that subsequently injected fluorescent NPs, either made of polystyrene or liposomes can be imaged in real-time. NP biodistribution and general
in vivo
properties can be easily monitored in embryos having selective fluorescent labeling of specific tissues. We demonstrate
in vitro
, by using optical tweezer micromanipulation, microscopy and flow cytometry that polyethylene glycol (PEG) coating of NPs decreases the level of adhesion of NPs to macrophages, and also to cancer cells.
In vivo
in zebrafish embryos, PEG coating resulted in longer NP circulation times, decreased macrophage uptake, and reduced adhesion to the endothelium. Importantly, liposomes were observed to accumulate passively and selectively in tumor-like structures comprised of human cancer cells. These results show that zebrafish embryo is a powerful system for microscopy-based screening of NPs on the route to preclinical testing.
The zebrafish embryo enables characterization of nanoparticles against cancer in an
in vivo
vertebrate model.</abstract><cop>England</cop><pmid>26648525</pmid><doi>10.1039/c5nr07289a</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2016-01, Vol.8 (2), p.862-877 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_rsc_primary_c5nr07289a |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Animals Cancer Cell Line, Tumor Disease Models, Animal Drug delivery systems Embryos Flow Cytometry Fluorescent Dyes - chemistry HEK293 Cells Human Humans Liposomes - chemistry Macrophages Macrophages - metabolism Metal Nanoparticles - chemistry Micromanipulation - methods Microscopy Microscopy, Electron, Scanning Microscopy, Electron, Transmission Nanomedicine - methods Nanoparticles Nanoparticles - chemistry Neoplasms - drug therapy Neoplasms - metabolism Neoplasms - therapy Optical Tweezers Polyethylene glycol Polyethylene Glycols - chemistry Polymers - chemistry Polystyrenes - chemistry Tissue Distribution Zebrafish Zebrafish - embryology |
title | Zebrafish as a model system for characterization of nanoparticles against cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zebrafish%20as%20a%20model%20system%20for%20characterization%20of%20nanoparticles%20against%20cancer&rft.jtitle=Nanoscale&rft.au=Evensen,%20Lasse&rft.date=2016-01-14&rft.volume=8&rft.issue=2&rft.spage=862&rft.epage=877&rft.pages=862-877&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c5nr07289a&rft_dat=%3Cproquest_rsc_p%3E1809626478%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1809626478&rft_id=info:pmid/26648525&rfr_iscdi=true |