Zebrafish as a model system for characterization of nanoparticles against cancer

Therapeutic nanoparticles (NPs) have great potential to deliver drugs against human diseases. Encapsulation of drugs in NPs protects them from being metabolized, while they are delivered specifically to a target site, thereby reducing toxicity and other side-effects. However, non-specific tissue acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2016-01, Vol.8 (2), p.862-877
Hauptverfasser: Evensen, Lasse, Johansen, Patrick L, Koster, Gerbrand, Zhu, Kaizheng, Herfindal, Lars, Speth, Martin, Fenaroli, Federico, Hildahl, Jon, Bagherifam, Shahla, Tulotta, Claudia, Prasmickaite, Lina, Mælandsmo, Gunhild M, Snaar-Jagalska, Ewa, Griffiths, Gareth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 877
container_issue 2
container_start_page 862
container_title Nanoscale
container_volume 8
creator Evensen, Lasse
Johansen, Patrick L
Koster, Gerbrand
Zhu, Kaizheng
Herfindal, Lars
Speth, Martin
Fenaroli, Federico
Hildahl, Jon
Bagherifam, Shahla
Tulotta, Claudia
Prasmickaite, Lina
Mælandsmo, Gunhild M
Snaar-Jagalska, Ewa
Griffiths, Gareth
description Therapeutic nanoparticles (NPs) have great potential to deliver drugs against human diseases. Encapsulation of drugs in NPs protects them from being metabolized, while they are delivered specifically to a target site, thereby reducing toxicity and other side-effects. However, non-specific tissue accumulation of NPs, for example in macrophages, especially in the spleen and liver is a general problem with many NPs being developed for cancer therapy. To address the problem of non-specific tissue accumulation of NPs we describe the development of the zebrafish embryo as a transparent vertebrate system for characterization of NPs against cancer. We show that injection of human cancer cells results in tumor-like structures, and that subsequently injected fluorescent NPs, either made of polystyrene or liposomes can be imaged in real-time. NP biodistribution and general in vivo properties can be easily monitored in embryos having selective fluorescent labeling of specific tissues. We demonstrate in vitro , by using optical tweezer micromanipulation, microscopy and flow cytometry that polyethylene glycol (PEG) coating of NPs decreases the level of adhesion of NPs to macrophages, and also to cancer cells. In vivo in zebrafish embryos, PEG coating resulted in longer NP circulation times, decreased macrophage uptake, and reduced adhesion to the endothelium. Importantly, liposomes were observed to accumulate passively and selectively in tumor-like structures comprised of human cancer cells. These results show that zebrafish embryo is a powerful system for microscopy-based screening of NPs on the route to preclinical testing. The zebrafish embryo enables characterization of nanoparticles against cancer in an in vivo vertebrate model.
doi_str_mv 10.1039/c5nr07289a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_c5nr07289a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1809626478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-fbe89cddb8ee3e43e89c80db8679f7e87754fe726d02e3b740f8e8e5eb6426673</originalsourceid><addsrcrecordid>eNpFkb1PwzAQxS0EoqWwsIM8IqSAYzu2M1YRX1IFCMHCEjnOmRolcbHTofz1pLSU6e7pfvd0eofQaUquUsLya5N1gUiqcr2HxpRwkjAm6f6uF3yEjmL8JETkTLBDNKJCcJXRbIye36EK2ro4xzpijVtfQ4PjKvbQYusDNnMdtOkhuG_dO99hb3GnO7_QoXemgWHpQ7su9tjozkA4RgdWNxFOtnWC3m5vXov7ZPZ091BMZ4nhnPeJrUDlpq4rBcCAs7VSZJBC5laCkjLjFiQVNaHAKsmJVaAgg0rw4XrJJuhi47sI_msJsS9bFw00je7AL2OZKpILKrhUA3q5QU3wMQaw5SK4VodVmZJynWBZZI8vvwlOB_h867usWqh36F9kA3C2AUI0u-n_C9gPF7Z2jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1809626478</pqid></control><display><type>article</type><title>Zebrafish as a model system for characterization of nanoparticles against cancer</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Evensen, Lasse ; Johansen, Patrick L ; Koster, Gerbrand ; Zhu, Kaizheng ; Herfindal, Lars ; Speth, Martin ; Fenaroli, Federico ; Hildahl, Jon ; Bagherifam, Shahla ; Tulotta, Claudia ; Prasmickaite, Lina ; Mælandsmo, Gunhild M ; Snaar-Jagalska, Ewa ; Griffiths, Gareth</creator><creatorcontrib>Evensen, Lasse ; Johansen, Patrick L ; Koster, Gerbrand ; Zhu, Kaizheng ; Herfindal, Lars ; Speth, Martin ; Fenaroli, Federico ; Hildahl, Jon ; Bagherifam, Shahla ; Tulotta, Claudia ; Prasmickaite, Lina ; Mælandsmo, Gunhild M ; Snaar-Jagalska, Ewa ; Griffiths, Gareth</creatorcontrib><description>Therapeutic nanoparticles (NPs) have great potential to deliver drugs against human diseases. Encapsulation of drugs in NPs protects them from being metabolized, while they are delivered specifically to a target site, thereby reducing toxicity and other side-effects. However, non-specific tissue accumulation of NPs, for example in macrophages, especially in the spleen and liver is a general problem with many NPs being developed for cancer therapy. To address the problem of non-specific tissue accumulation of NPs we describe the development of the zebrafish embryo as a transparent vertebrate system for characterization of NPs against cancer. We show that injection of human cancer cells results in tumor-like structures, and that subsequently injected fluorescent NPs, either made of polystyrene or liposomes can be imaged in real-time. NP biodistribution and general in vivo properties can be easily monitored in embryos having selective fluorescent labeling of specific tissues. We demonstrate in vitro , by using optical tweezer micromanipulation, microscopy and flow cytometry that polyethylene glycol (PEG) coating of NPs decreases the level of adhesion of NPs to macrophages, and also to cancer cells. In vivo in zebrafish embryos, PEG coating resulted in longer NP circulation times, decreased macrophage uptake, and reduced adhesion to the endothelium. Importantly, liposomes were observed to accumulate passively and selectively in tumor-like structures comprised of human cancer cells. These results show that zebrafish embryo is a powerful system for microscopy-based screening of NPs on the route to preclinical testing. The zebrafish embryo enables characterization of nanoparticles against cancer in an in vivo vertebrate model.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c5nr07289a</identifier><identifier>PMID: 26648525</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Cancer ; Cell Line, Tumor ; Disease Models, Animal ; Drug delivery systems ; Embryos ; Flow Cytometry ; Fluorescent Dyes - chemistry ; HEK293 Cells ; Human ; Humans ; Liposomes - chemistry ; Macrophages ; Macrophages - metabolism ; Metal Nanoparticles - chemistry ; Micromanipulation - methods ; Microscopy ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Nanomedicine - methods ; Nanoparticles ; Nanoparticles - chemistry ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Neoplasms - therapy ; Optical Tweezers ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Polymers - chemistry ; Polystyrenes - chemistry ; Tissue Distribution ; Zebrafish ; Zebrafish - embryology</subject><ispartof>Nanoscale, 2016-01, Vol.8 (2), p.862-877</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-fbe89cddb8ee3e43e89c80db8679f7e87754fe726d02e3b740f8e8e5eb6426673</citedby><cites>FETCH-LOGICAL-c444t-fbe89cddb8ee3e43e89c80db8679f7e87754fe726d02e3b740f8e8e5eb6426673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26648525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Evensen, Lasse</creatorcontrib><creatorcontrib>Johansen, Patrick L</creatorcontrib><creatorcontrib>Koster, Gerbrand</creatorcontrib><creatorcontrib>Zhu, Kaizheng</creatorcontrib><creatorcontrib>Herfindal, Lars</creatorcontrib><creatorcontrib>Speth, Martin</creatorcontrib><creatorcontrib>Fenaroli, Federico</creatorcontrib><creatorcontrib>Hildahl, Jon</creatorcontrib><creatorcontrib>Bagherifam, Shahla</creatorcontrib><creatorcontrib>Tulotta, Claudia</creatorcontrib><creatorcontrib>Prasmickaite, Lina</creatorcontrib><creatorcontrib>Mælandsmo, Gunhild M</creatorcontrib><creatorcontrib>Snaar-Jagalska, Ewa</creatorcontrib><creatorcontrib>Griffiths, Gareth</creatorcontrib><title>Zebrafish as a model system for characterization of nanoparticles against cancer</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Therapeutic nanoparticles (NPs) have great potential to deliver drugs against human diseases. Encapsulation of drugs in NPs protects them from being metabolized, while they are delivered specifically to a target site, thereby reducing toxicity and other side-effects. However, non-specific tissue accumulation of NPs, for example in macrophages, especially in the spleen and liver is a general problem with many NPs being developed for cancer therapy. To address the problem of non-specific tissue accumulation of NPs we describe the development of the zebrafish embryo as a transparent vertebrate system for characterization of NPs against cancer. We show that injection of human cancer cells results in tumor-like structures, and that subsequently injected fluorescent NPs, either made of polystyrene or liposomes can be imaged in real-time. NP biodistribution and general in vivo properties can be easily monitored in embryos having selective fluorescent labeling of specific tissues. We demonstrate in vitro , by using optical tweezer micromanipulation, microscopy and flow cytometry that polyethylene glycol (PEG) coating of NPs decreases the level of adhesion of NPs to macrophages, and also to cancer cells. In vivo in zebrafish embryos, PEG coating resulted in longer NP circulation times, decreased macrophage uptake, and reduced adhesion to the endothelium. Importantly, liposomes were observed to accumulate passively and selectively in tumor-like structures comprised of human cancer cells. These results show that zebrafish embryo is a powerful system for microscopy-based screening of NPs on the route to preclinical testing. The zebrafish embryo enables characterization of nanoparticles against cancer in an in vivo vertebrate model.</description><subject>Animals</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Disease Models, Animal</subject><subject>Drug delivery systems</subject><subject>Embryos</subject><subject>Flow Cytometry</subject><subject>Fluorescent Dyes - chemistry</subject><subject>HEK293 Cells</subject><subject>Human</subject><subject>Humans</subject><subject>Liposomes - chemistry</subject><subject>Macrophages</subject><subject>Macrophages - metabolism</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Micromanipulation - methods</subject><subject>Microscopy</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanomedicine - methods</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - therapy</subject><subject>Optical Tweezers</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers - chemistry</subject><subject>Polystyrenes - chemistry</subject><subject>Tissue Distribution</subject><subject>Zebrafish</subject><subject>Zebrafish - embryology</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkb1PwzAQxS0EoqWwsIM8IqSAYzu2M1YRX1IFCMHCEjnOmRolcbHTofz1pLSU6e7pfvd0eofQaUquUsLya5N1gUiqcr2HxpRwkjAm6f6uF3yEjmL8JETkTLBDNKJCcJXRbIye36EK2ro4xzpijVtfQ4PjKvbQYusDNnMdtOkhuG_dO99hb3GnO7_QoXemgWHpQ7su9tjozkA4RgdWNxFOtnWC3m5vXov7ZPZ091BMZ4nhnPeJrUDlpq4rBcCAs7VSZJBC5laCkjLjFiQVNaHAKsmJVaAgg0rw4XrJJuhi47sI_msJsS9bFw00je7AL2OZKpILKrhUA3q5QU3wMQaw5SK4VodVmZJynWBZZI8vvwlOB_h867usWqh36F9kA3C2AUI0u-n_C9gPF7Z2jw</recordid><startdate>20160114</startdate><enddate>20160114</enddate><creator>Evensen, Lasse</creator><creator>Johansen, Patrick L</creator><creator>Koster, Gerbrand</creator><creator>Zhu, Kaizheng</creator><creator>Herfindal, Lars</creator><creator>Speth, Martin</creator><creator>Fenaroli, Federico</creator><creator>Hildahl, Jon</creator><creator>Bagherifam, Shahla</creator><creator>Tulotta, Claudia</creator><creator>Prasmickaite, Lina</creator><creator>Mælandsmo, Gunhild M</creator><creator>Snaar-Jagalska, Ewa</creator><creator>Griffiths, Gareth</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160114</creationdate><title>Zebrafish as a model system for characterization of nanoparticles against cancer</title><author>Evensen, Lasse ; Johansen, Patrick L ; Koster, Gerbrand ; Zhu, Kaizheng ; Herfindal, Lars ; Speth, Martin ; Fenaroli, Federico ; Hildahl, Jon ; Bagherifam, Shahla ; Tulotta, Claudia ; Prasmickaite, Lina ; Mælandsmo, Gunhild M ; Snaar-Jagalska, Ewa ; Griffiths, Gareth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-fbe89cddb8ee3e43e89c80db8679f7e87754fe726d02e3b740f8e8e5eb6426673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Disease Models, Animal</topic><topic>Drug delivery systems</topic><topic>Embryos</topic><topic>Flow Cytometry</topic><topic>Fluorescent Dyes - chemistry</topic><topic>HEK293 Cells</topic><topic>Human</topic><topic>Humans</topic><topic>Liposomes - chemistry</topic><topic>Macrophages</topic><topic>Macrophages - metabolism</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Micromanipulation - methods</topic><topic>Microscopy</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanomedicine - methods</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - therapy</topic><topic>Optical Tweezers</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers - chemistry</topic><topic>Polystyrenes - chemistry</topic><topic>Tissue Distribution</topic><topic>Zebrafish</topic><topic>Zebrafish - embryology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evensen, Lasse</creatorcontrib><creatorcontrib>Johansen, Patrick L</creatorcontrib><creatorcontrib>Koster, Gerbrand</creatorcontrib><creatorcontrib>Zhu, Kaizheng</creatorcontrib><creatorcontrib>Herfindal, Lars</creatorcontrib><creatorcontrib>Speth, Martin</creatorcontrib><creatorcontrib>Fenaroli, Federico</creatorcontrib><creatorcontrib>Hildahl, Jon</creatorcontrib><creatorcontrib>Bagherifam, Shahla</creatorcontrib><creatorcontrib>Tulotta, Claudia</creatorcontrib><creatorcontrib>Prasmickaite, Lina</creatorcontrib><creatorcontrib>Mælandsmo, Gunhild M</creatorcontrib><creatorcontrib>Snaar-Jagalska, Ewa</creatorcontrib><creatorcontrib>Griffiths, Gareth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evensen, Lasse</au><au>Johansen, Patrick L</au><au>Koster, Gerbrand</au><au>Zhu, Kaizheng</au><au>Herfindal, Lars</au><au>Speth, Martin</au><au>Fenaroli, Federico</au><au>Hildahl, Jon</au><au>Bagherifam, Shahla</au><au>Tulotta, Claudia</au><au>Prasmickaite, Lina</au><au>Mælandsmo, Gunhild M</au><au>Snaar-Jagalska, Ewa</au><au>Griffiths, Gareth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zebrafish as a model system for characterization of nanoparticles against cancer</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2016-01-14</date><risdate>2016</risdate><volume>8</volume><issue>2</issue><spage>862</spage><epage>877</epage><pages>862-877</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Therapeutic nanoparticles (NPs) have great potential to deliver drugs against human diseases. Encapsulation of drugs in NPs protects them from being metabolized, while they are delivered specifically to a target site, thereby reducing toxicity and other side-effects. However, non-specific tissue accumulation of NPs, for example in macrophages, especially in the spleen and liver is a general problem with many NPs being developed for cancer therapy. To address the problem of non-specific tissue accumulation of NPs we describe the development of the zebrafish embryo as a transparent vertebrate system for characterization of NPs against cancer. We show that injection of human cancer cells results in tumor-like structures, and that subsequently injected fluorescent NPs, either made of polystyrene or liposomes can be imaged in real-time. NP biodistribution and general in vivo properties can be easily monitored in embryos having selective fluorescent labeling of specific tissues. We demonstrate in vitro , by using optical tweezer micromanipulation, microscopy and flow cytometry that polyethylene glycol (PEG) coating of NPs decreases the level of adhesion of NPs to macrophages, and also to cancer cells. In vivo in zebrafish embryos, PEG coating resulted in longer NP circulation times, decreased macrophage uptake, and reduced adhesion to the endothelium. Importantly, liposomes were observed to accumulate passively and selectively in tumor-like structures comprised of human cancer cells. These results show that zebrafish embryo is a powerful system for microscopy-based screening of NPs on the route to preclinical testing. The zebrafish embryo enables characterization of nanoparticles against cancer in an in vivo vertebrate model.</abstract><cop>England</cop><pmid>26648525</pmid><doi>10.1039/c5nr07289a</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2016-01, Vol.8 (2), p.862-877
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_c5nr07289a
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Animals
Cancer
Cell Line, Tumor
Disease Models, Animal
Drug delivery systems
Embryos
Flow Cytometry
Fluorescent Dyes - chemistry
HEK293 Cells
Human
Humans
Liposomes - chemistry
Macrophages
Macrophages - metabolism
Metal Nanoparticles - chemistry
Micromanipulation - methods
Microscopy
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Nanomedicine - methods
Nanoparticles
Nanoparticles - chemistry
Neoplasms - drug therapy
Neoplasms - metabolism
Neoplasms - therapy
Optical Tweezers
Polyethylene glycol
Polyethylene Glycols - chemistry
Polymers - chemistry
Polystyrenes - chemistry
Tissue Distribution
Zebrafish
Zebrafish - embryology
title Zebrafish as a model system for characterization of nanoparticles against cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zebrafish%20as%20a%20model%20system%20for%20characterization%20of%20nanoparticles%20against%20cancer&rft.jtitle=Nanoscale&rft.au=Evensen,%20Lasse&rft.date=2016-01-14&rft.volume=8&rft.issue=2&rft.spage=862&rft.epage=877&rft.pages=862-877&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c5nr07289a&rft_dat=%3Cproquest_rsc_p%3E1809626478%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1809626478&rft_id=info:pmid/26648525&rfr_iscdi=true